BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28263978)

  • 1. Differing tumor-suppressor functions of Arf and p53 in murine basal cell carcinoma initiation and progression.
    Wang GY; Wood CN; Dolorito JA; Libove E; Epstein EH
    Oncogene; 2017 Jun; 36(26):3772-3780. PubMed ID: 28263978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation.
    Lin AW; Lowe SW
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5025-30. PubMed ID: 11309506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E2F1 suppresses skin carcinogenesis via the ARF-p53 pathway.
    Russell JL; Weaks RL; Berton TR; Johnson DG
    Oncogene; 2006 Feb; 25(6):867-76. PubMed ID: 16205640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-Derived Suppressor of Fused Mutations Reveal Hedgehog Pathway Interactions.
    Urman NM; Mirza A; Atwood SX; Whitson RJ; Sarin KY; Tang JY; Oro AE
    PLoS One; 2016; 11(12):e0168031. PubMed ID: 28030567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDAC1/2 Control Proliferation and Survival in Adult Epidermis and Pre‒Basal Cell Carcinoma through p16 and p53.
    Zhu X; Leboeuf M; Liu F; Grachtchouk M; Seykora JT; Morrisey EE; Dlugosz AA; Millar SE
    J Invest Dermatol; 2022 Jan; 142(1):77-87.e10. PubMed ID: 34284046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deregulation of the tumour suppressor genes p14(ARF), p15(INK4b), p16(INK4a) and p53 in basal cell carcinoma.
    Kanellou P; Zaravinos A; Zioga M; Spandidos DA
    Br J Dermatol; 2009 Jun; 160(6):1215-21. PubMed ID: 19298278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of mismatch repair enzymes, hMLH1 and hMSH2 is not associated with microsatellite instability and P53 protein accumulation in basal cell carcinoma.
    Saetta AA; Aroni K; Stamatelli A; Lazaris AC; Patsouris E
    Arch Dermatol Res; 2005 Sep; 297(3):99-107. PubMed ID: 16012876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dicer cooperates with p53 to suppress DNA damage and skin carcinogenesis in mice.
    Lyle S; Hoover K; Colpan C; Zhu Z; Matijasevic Z; Jones SN
    PLoS One; 2014; 9(6):e100920. PubMed ID: 24979267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P16 UV mutations in human skin epithelial tumors.
    Soufir N; Molès JP; Vilmer C; Moch C; Verola O; Rivet J; Tesniere A; Dubertret L; Basset-Seguin N
    Oncogene; 1999 Sep; 18(39):5477-81. PubMed ID: 10498902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.
    Huang SW; Chang SH; Mu SW; Jiang HY; Wang ST; Kao JK; Huang JL; Wu CY; Chen YJ; Shieh JJ
    J Dermatol Sci; 2016 Mar; 81(3):182-91. PubMed ID: 26775629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IKKβ-Mediated Resistance to Skin Cancer Development Is
    Page A; Bravo A; Suarez-Cabrera C; Alameda JP; Casanova ML; Lorz C; Segrelles C; Segovia JC; Paramio JM; Navarro M; Ramirez A
    Mol Cancer Res; 2017 Sep; 15(9):1255-1264. PubMed ID: 28584022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways.
    Kelly-Spratt KS; Gurley KE; Yasui Y; Kemp CJ
    PLoS Biol; 2004 Aug; 2(8):E242. PubMed ID: 15314658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer.
    de Gruijl FR; van Kranen HJ; Mullenders LH
    J Photochem Photobiol B; 2001 Oct; 63(1-3):19-27. PubMed ID: 11684448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis.
    Sinha VC; Qin L; Li Y
    Mol Cancer Res; 2015 Feb; 13(2):231-8. PubMed ID: 25253740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germline and somatic mutations of the INK4a-ARF gene in a xeroderma pigmentosum group C patient.
    Soufir N; Ribojad M; Magnaldo T; Thibaudeau O; Delestaing G; Daya-Grosjean L; Rivet J; Sarasin A; Basset-Seguin N
    J Invest Dermatol; 2002 Dec; 119(6):1355-60. PubMed ID: 12485439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice.
    Mancuso M; Pazzaglia S; Tanori M; Hahn H; Merola P; Rebessi S; Atkinson MJ; Di Majo V; Covelli V; Saran A
    Cancer Res; 2004 Feb; 64(3):934-41. PubMed ID: 14871823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation.
    Damalas A; Kahan S; Shtutman M; Ben-Ze'ev A; Oren M
    EMBO J; 2001 Sep; 20(17):4912-22. PubMed ID: 11532955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p16 gene expression in basal cell carcinoma.
    Eshkoor SA; Ismail P; Rahman SA; Oshkour SA
    Arch Med Res; 2008 Oct; 39(7):668-73. PubMed ID: 18760195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of apoptosis in basal cell and squamous cell carcinoma formation.
    Erb P; Ji J; Wernli M; Kump E; Glaser A; Büchner SA
    Immunol Lett; 2005 Aug; 100(1):68-72. PubMed ID: 16054233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Molecular Genetics of Basal Cell Carcinoma.
    Pellegrini C; Maturo MG; Di Nardo L; Ciciarelli V; Gutiérrez García-Rodrigo C; Fargnoli MC
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29165358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.