BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28264054)

  • 21. Determinants flanking the CD4 binding loop modulate macrophage tropism of human immunodeficiency virus type 1 R5 envelopes.
    Duenas-Decamp MJ; Peters PJ; Burton D; Clapham PR
    J Virol; 2009 Mar; 83(6):2575-83. PubMed ID: 19129457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies.
    Gorry PR; Francella N; Lewin SR; Collman RG
    J Leukoc Biol; 2014 Jan; 95(1):71-81. PubMed ID: 24158961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of HIV-1 macrophage-tropism among R5 envelopes occurs before detection of neutralizing antibodies.
    Richards KH; Aasa-Chapman MM; McKnight A; Clapham PR
    Retrovirology; 2010 May; 7():48. PubMed ID: 20507591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor.
    Martín-García J; Cao W; Varela-Rohena A; Plassmeyer ML; González-Scarano F
    Virology; 2006 Mar; 346(1):169-79. PubMed ID: 16309726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HIV-1 target cells in the CNS.
    Joseph SB; Arrildt KT; Sturdevant CB; Swanstrom R
    J Neurovirol; 2015 Jun; 21(3):276-89. PubMed ID: 25236812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor.
    Espy N; Pacheco B; Sodroski J
    Virology; 2017 Aug; 508():90-107. PubMed ID: 28521215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the Physicochemical and Structural Modifications Associated with HIV-1 Subtype B Tropism Transition.
    Lamers SL; Fogel GB; Liu ES; Salemi M; McGrath MS
    AIDS Res Hum Retroviruses; 2016 Aug; 32(8):829-40. PubMed ID: 27071630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential CD4/CCR5 utilization, gp120 conformation, and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate.
    Martín J; LaBranche CC; González-Scarano F
    J Virol; 2001 Apr; 75(8):3568-80. PubMed ID: 11264346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central nervous system compartmentalization of HIV-1 subtype C variants early and late in infection in young children.
    Sturdevant CB; Dow A; Jabara CB; Joseph SB; Schnell G; Takamune N; Mallewa M; Heyderman RS; Van Rie A; Swanstrom R
    PLoS Pathog; 2012 Dec; 8(12):e1003094. PubMed ID: 23300446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CCR5-dependent novel mechanism for type 1 HIV gp120 induced loss of macrophage cell surface CD4.
    Hewson TJ; Logie JJ; Simmonds P; Howie SE
    J Immunol; 2001 Apr; 166(8):4835-42. PubMed ID: 11290759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. R5 HIV gp120-mediated cellular contacts induce the death of single CCR5-expressing CD4 T cells by a gp41-dependent mechanism.
    Blanco J; Barretina J; Clotet B; Esté JA
    J Leukoc Biol; 2004 Oct; 76(4):804-11. PubMed ID: 15258189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stoichiometry for entry and binding properties of the Env protein of R5 T cell-tropic HIV-1 and its evolutionary variant of macrophage-tropic HIV-1.
    Bonner X; Sondgeroth A; McCue A; Nicely N; Tripathy A; Spielvogel E; Moeser M; Ke R; Leiderman K; Joseph SB; Swanstrom R
    mBio; 2024 Apr; 15(4):e0032124. PubMed ID: 38426750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor.
    Weissman D; Rabin RL; Arthos J; Rubbert A; Dybul M; Swofford R; Venkatesan S; Farber JM; Fauci AS
    Nature; 1997 Oct; 389(6654):981-5. PubMed ID: 9353123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. R5 and X4 HIV envelopes induce distinct gene expression profiles in primary peripheral blood mononuclear cells.
    Cicala C; Arthos J; Martinelli E; Censoplano N; Cruz CC; Chung E; Selig SM; Van Ryk D; Yang J; Jagannatha S; Chun TW; Ren P; Lempicki RA; Fauci AS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3746-51. PubMed ID: 16505369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acquisition of CD4-dependence by CD4-independent SIV passaged in human peripheral blood mononuclear cells.
    Iyengar S; Schwartz DH
    Retrovirology; 2012 Jul; 9():61. PubMed ID: 22830620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion.
    Fantini J; Hammache D; Piéroni G; Yahi N
    Glycoconj J; 2000; 17(3 -4):199-204. PubMed ID: 11201791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HIV progression to AIDS: bioinformatics approach to determining the mechanism of action.
    Nwankwo N; Seker H
    Curr HIV Res; 2013 Jan; 11(1):30-42. PubMed ID: 22998236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIV-1 Gag, Envelope, and Extracellular Determinants Cooperate To Regulate the Stability and Turnover of Virological Synapses.
    Gardiner JC; Mauer EJ; Sherer NM
    J Virol; 2016 Jul; 90(14):6583-6597. PubMed ID: 27170746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary in vitro growth cycle and transmission studies of HIV-1 in an autologous primary cell assay of blood-derived macrophages and peripheral blood mononuclear cells.
    Tsai WP; Conley SR; Kung HF; Garrity RR; Nara PL
    Virology; 1996 Dec; 226(2):205-16. PubMed ID: 8955040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation.
    Woodburn BM; Kanchi K; Zhou S; Colaianni N; Joseph SB; Swanstrom R
    J Virol; 2022 Sep; 96(17):e0095722. PubMed ID: 35975998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.