These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28264156)
1. Photochemical Activation of Electrospun In Meng Y; Liu G; Liu A; Guo Z; Sun W; Shan F ACS Appl Mater Interfaces; 2017 Mar; 9(12):10805-10812. PubMed ID: 28264156 [TBL] [Abstract][Full Text] [Related]
2. High performance electronic devices based on nanofibers via a crosslinking welding process. Cui Y; Meng Y; Wang Z; Wang C; Liu G; Martins R; Fortunato E; Shan F Nanoscale; 2018 Nov; 10(41):19427-19434. PubMed ID: 30310899 [TBL] [Abstract][Full Text] [Related]
3. Combustion synthesis of electrospun LaInO nanofiber for high-performance field-effect transistors. Chen Q; Li J; Yang Y; Zhu W; Zhang J Nanotechnology; 2019 Oct; 30(42):425205. PubMed ID: 31386631 [TBL] [Abstract][Full Text] [Related]
4. Electrospun Yb-Doped In Jun L; Chen Q; Fu W; Yang Y; Zhu W; Zhang J ACS Appl Mater Interfaces; 2020 Aug; 12(34):38425-38434. PubMed ID: 32786210 [TBL] [Abstract][Full Text] [Related]
5. Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer. Choi SH; Jang BH; Park JS; Demadrille R; Tuller HL; Kim ID ACS Nano; 2014 Mar; 8(3):2318-27. PubMed ID: 24484512 [TBL] [Abstract][Full Text] [Related]
6. High Annealing Stability of InAlZnO Nanofiber Field-Effect Transistors with Improved Morphology by Al Doping. He J; Liu X; Song L; Li H; Zu H; Li J; Zhang H; Zhang J; Qin Y; Wang F J Phys Chem Lett; 2021 Feb; 12(4):1339-1345. PubMed ID: 33502855 [TBL] [Abstract][Full Text] [Related]
7. Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics. Meng Y; Lou K; Qi R; Guo Z; Shin B; Liu G; Shan F ACS Appl Mater Interfaces; 2018 Jun; 10(24):20703-20711. PubMed ID: 29799183 [TBL] [Abstract][Full Text] [Related]
8. High-Performance IGZO Nanowire-Based Field-Effect Transistors with Random-Network Channels by Electrospun PVP Nanofiber Template Transfer. Park KW; Cho WJ Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160640 [TBL] [Abstract][Full Text] [Related]
9. Low-voltage and high-performance field-effect transistors based on Zn Wang Z; Meng Y; Cui Y; Fan C; Liu G; Shin B; Feng D; Shan F Nanoscale; 2018 Aug; 10(30):14712-14718. PubMed ID: 30043022 [TBL] [Abstract][Full Text] [Related]
10. Enhanced performance of In Wu L; Xu J; Li Q; Fan Z; Mei F; Zhou Y; Yan J; Chen Y Nanotechnology; 2020 Aug; 31(35):355703. PubMed ID: 32357357 [TBL] [Abstract][Full Text] [Related]
11. Microwave-assisted calcination of electrospun indium-gallium-zinc oxide nanofibers for high-performance field-effect transistors. Cho SK; Cho WJ RSC Adv; 2020 Oct; 10(63):38351-38356. PubMed ID: 35517543 [TBL] [Abstract][Full Text] [Related]
12. Electrospun p-Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors. Liu A; Meng Y; Zhu H; Noh YY; Liu G; Shan F ACS Appl Mater Interfaces; 2018 Aug; 10(31):25841-25849. PubMed ID: 28937205 [TBL] [Abstract][Full Text] [Related]
13. Fully solution-processed low-voltage aqueous In2O3 thin-film transistors using an ultrathin ZrO(x) dielectric. Liu A; Liu GX; Zhu HH; Xu F; Fortunato E; Martins R; Shan FK ACS Appl Mater Interfaces; 2014 Oct; 6(20):17364-9. PubMed ID: 25285983 [TBL] [Abstract][Full Text] [Related]
14. Sub-5 nm Ultrathin In Xu L; Xu L; Lan J; Li Y; Li Q; Wang A; Guo Y; Ang YS; Quhe R; Lu J ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38676632 [TBL] [Abstract][Full Text] [Related]
15. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. Zou X; Liu X; Wang C; Jiang Y; Wang Y; Xiao X; Ho JC; Li J; Jiang C; Xiong Q; Liao L ACS Nano; 2013 Jan; 7(1):804-10. PubMed ID: 23228028 [TBL] [Abstract][Full Text] [Related]
16. Comparative Study on Indium Precursors for Plasma-Enhanced Atomic Layer Deposition of In Lee HY; Hur JS; Cho I; Choi CH; Yoon SH; Kwon Y; Shong B; Jeong JK ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37877895 [TBL] [Abstract][Full Text] [Related]
17. Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors. Wang Q; Jiang S; Qian J; Song L; Zhang L; Zhang Y; Zhang Y; Wang Y; Wang X; Shi Y; Zheng Y; Li Y Sci Rep; 2017 Aug; 7(1):7830. PubMed ID: 28798302 [TBL] [Abstract][Full Text] [Related]
18. High performance printed oxide field-effect transistors processed using photonic curing. Garlapati SK; Marques GC; Gebauer JS; Dehm S; Bruns M; Winterer M; Tahoori MB; Aghassi-Hagmann J; Hahn H; Dasgupta S Nanotechnology; 2018 Jun; 29(23):235205. PubMed ID: 29553481 [TBL] [Abstract][Full Text] [Related]
19. High performance solution-processed indium oxide thin-film transistors. Kim HS; Byrne PD; Facchetti A; Marks TJ J Am Chem Soc; 2008 Sep; 130(38):12580-1. PubMed ID: 18759390 [TBL] [Abstract][Full Text] [Related]
20. UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors. Carlos E; Branquinho R; Kiazadeh A; Barquinha P; Martins R; Fortunato E ACS Appl Mater Interfaces; 2016 Nov; 8(45):31100-31108. PubMed ID: 27762536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]