These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28264196)

  • 1. Molecular basis of ancestral vertebrate electroreception.
    Bellono NW; Leitch DB; Julius D
    Nature; 2017 Mar; 543(7645):391-396. PubMed ID: 28264196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular tuning of electroreception in sharks and skates.
    Bellono NW; Leitch DB; Julius D
    Nature; 2018 Jun; 558(7708):122-126. PubMed ID: 29849147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-Activated Big-Conductance (BK) Potassium Channels Traffic through Nuclear Envelopes into Kinocilia in Ray Electrosensory Cells.
    Chen AL; Wu TH; Shi L; Clusin WT; Kao PN
    Cells; 2023 Aug; 12(17):. PubMed ID: 37681857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.
    King BL; Shi LF; Kao P; Clusin WT
    Gene; 2016 Mar; 578(1):63-73. PubMed ID: 26687710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor.
    Miranda P; Holmgren M; Giraldez T
    Elife; 2018 Dec; 7():. PubMed ID: 30526860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple regulatory sites in large-conductance calcium-activated potassium channels.
    Xia XM; Zeng X; Lingle CJ
    Nature; 2002 Aug; 418(6900):880-4. PubMed ID: 12192411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling.
    Berkefeld H; Sailer CA; Bildl W; Rohde V; Thumfart JO; Eble S; Klugbauer N; Reisinger E; Bischofberger J; Oliver D; Knaus HG; Schulte U; Fakler B
    Science; 2006 Oct; 314(5799):615-20. PubMed ID: 17068255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of magnesium activation of calcium-activated potassium channels.
    Shi J; Krishnamoorthy G; Yang Y; Hu L; Chaturvedi N; Harilal D; Qin J; Cui J
    Nature; 2002 Aug; 418(6900):876-80. PubMed ID: 12192410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of beta4 subunit modulation of BK channels.
    Wang B; Rothberg BS; Brenner R
    J Gen Physiol; 2006 Apr; 127(4):449-65. PubMed ID: 16567466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.
    Miranda P; Giraldez T; Holmgren M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14055-14060. PubMed ID: 27872281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaV1.3 L-type channels, maxiK Ca(2+)-dependent K(+) channels and bestrophin-1 regulate rhythmic photoreceptor outer segment phagocytosis by retinal pigment epithelial cells.
    Müller C; Más Gómez N; Ruth P; Strauss O
    Cell Signal; 2014 May; 26(5):968-78. PubMed ID: 24407175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains.
    Piskorowski R; Aldrich RW
    Nature; 2002 Dec; 420(6915):499-502. PubMed ID: 12466841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and functional identification of cyclic AMP-sensitive BKCa potassium channels (ZERO variant) and L-type voltage-dependent calcium channels in single rat juxtaglomerular cells.
    Friis UG; Jørgensen F; Andreasen D; Jensen BL; Skøtt O
    Circ Res; 2003 Aug; 93(3):213-20. PubMed ID: 12842920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates.
    Lu J; Fishman HM
    Biophys J; 1994 Oct; 67(4):1525-33. PubMed ID: 7529586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3044-50. PubMed ID: 19749096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysics of BK Channel Gating.
    Pantazis A; Olcese R
    Int Rev Neurobiol; 2016; 128():1-49. PubMed ID: 27238260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximal clustering between BK and Ca
    Vivas O; Moreno CM; Santana LF; Hille B
    Elife; 2017 Jun; 6():. PubMed ID: 28665272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and Functional Components of the Skate Sensory Organ Ampullae of Lorenzini.
    Zhang X; Xia K; Lin L; Zhang F; Yu Y; St Ange K; Han X; Edsinger E; Sohn J; Linhardt RJ
    ACS Chem Biol; 2018 Jun; 13(6):1677-1685. PubMed ID: 29708722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary γ subunits.
    Li Q; Fan F; Kwak HR; Yan J
    J Gen Physiol; 2015 Jun; 145(6):543-54. PubMed ID: 26009545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.