These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 2826420)
1. The effects of fatty acids on phosphoinositide synthesis and myo-inositol accumulation in exocrine pancreas. Chaudhry A; Laychock SG; Rubin RP J Biol Chem; 1987 Dec; 262(36):17426-31. PubMed ID: 2826420 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the regulation of phosphatidylinositol-4,5-bisphosphate synthesis by arachidonic acid in exocrine pancreas. Chaudhry A; Conway BR; Laychock SG; Rubin RP Arch Biochem Biophys; 1989 Aug; 272(2):488-95. PubMed ID: 2546502 [TBL] [Abstract][Full Text] [Related]
3. Relationship between delta-9-tetrahydrocannabinol-induced arachidonic acid release and secretagogue-evoked phosphoinositide breakdown and Ca2+ mobilization of exocrine pancreas. Chaudhry A; Thompson RH; Rubin RP; Laychock SG Mol Pharmacol; 1988 Oct; 34(4):543-8. PubMed ID: 2459592 [TBL] [Abstract][Full Text] [Related]
4. Gonadotropin-releasing hormone (GnRH) rapidly stimulates the formation of inositol phosphates and diacyglycerol in rat granulosa cells: further evidence for the involvement of Ca2+ and protein kinase C in the action of GnRH. Davis JS; West LA; Farese RV Endocrinology; 1986 Jun; 118(6):2561-71. PubMed ID: 3009164 [TBL] [Abstract][Full Text] [Related]
5. Acetylcholine stimulates selective liberation and re-esterification of arachidonate and accumulation of inositol phosphates and glycerophosphoinositol in C62B glioma cells. DeGeorge JJ; Ousley AH; McCarthy KD; Lapetina EG; Morell P J Biol Chem; 1987 Jun; 262(17):8077-83. PubMed ID: 3110145 [TBL] [Abstract][Full Text] [Related]
6. Carbamoylcholine-induced accumulation of inositol mono-, bis-, tris- and tetrakisphosphates in isolated cardiac myocytes from adult rats. Berg I; Guse AH; Gercken G Biochim Biophys Acta; 1989 Jan; 1010(1):100-7. PubMed ID: 2909244 [TBL] [Abstract][Full Text] [Related]
7. Modulation of phosphoinositide metabolism in rat brain slices by excitatory amino acids, arachidonic acid, and GABA. Li XH; Song L; Jope RS Neurochem Res; 1990 Jul; 15(7):725-38. PubMed ID: 1975654 [TBL] [Abstract][Full Text] [Related]
8. Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas. Taylor CW; Merritt JE; Putney JW; Rubin RP Biochem J; 1986 Sep; 238(3):765-72. PubMed ID: 3026361 [TBL] [Abstract][Full Text] [Related]
9. Source of 3H-labeled inositol bis- and monophosphates in agonist-activated rat parotid acinar cells. Hughes AR; Putney JW J Biol Chem; 1989 Jun; 264(16):9400-7. PubMed ID: 2542308 [TBL] [Abstract][Full Text] [Related]
11. Alpha 1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Brown JH; Buxton IL; Brunton LL Circ Res; 1985 Oct; 57(4):532-7. PubMed ID: 2412720 [TBL] [Abstract][Full Text] [Related]
12. Gonadotropin-releasing hormone activates a rapid Ca2+-independent phosphodiester hydrolysis of polyphosphoinositides in pituitary gonadotrophs. Naor Z; Azrad A; Limor R; Zakut H; Lotan M J Biol Chem; 1986 Sep; 261(27):12506-12. PubMed ID: 3017978 [TBL] [Abstract][Full Text] [Related]
13. Biochemical aspects of the phosphoinositide signalling system with special reference to the formation of inositol cyclic phosphates and arachidonic acid and metabolites on agonist stimulation. Hokin LE; Dixon JF; Reichman M; Sekar MC Adv Enzyme Regul; 1987; 26():117-32. PubMed ID: 2823545 [TBL] [Abstract][Full Text] [Related]
14. The incorporation of [myo-2-3H] inositol into phosphatidyl inositol of stimulated rat pancreas. Chapman BA; Patapanian H; Pattinson NR; Wilson JS; Pirola RC; Somer JB Biochem Int; 1987 Apr; 14(4):697-705. PubMed ID: 2455517 [TBL] [Abstract][Full Text] [Related]
15. Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus, and striatum. Jenkinson S; Patel N; Nahorski SR; Challiss RA J Neurochem; 1993 Sep; 61(3):1082-90. PubMed ID: 8395558 [TBL] [Abstract][Full Text] [Related]
16. The contribution of inositol exchange to agonist-stimulated breakdown of myo- [2-3H] inositol-labelled phosphatidylinositol in mouse exocrine pancreas. Tennes KA; Roberts ML Aust J Exp Biol Med Sci; 1984 Jun; 62 ( Pt 3)():303-8. PubMed ID: 6497780 [TBL] [Abstract][Full Text] [Related]
17. Sorbinil prevents the hypergalactosemic-induced reduction in [3H]-myo-inositol uptake and decreased [3H]-myo-inositol incorporation into the phosphoinositide cycle in bovine lens epithelial cells in vitro. Cammarata PR; Tse D; Yorio T Curr Eye Res; 1990 Jun; 9(6):561-8. PubMed ID: 2167191 [TBL] [Abstract][Full Text] [Related]
18. Characterization of agonist-stimulated incorporation of myo-[3H]inositol into inositol phospholipids and [3H]inositol phosphate formation in tracheal smooth muscle. Chilvers ER; Barnes PJ; Nahorski SR Biochem J; 1989 Sep; 262(3):739-46. PubMed ID: 2556108 [TBL] [Abstract][Full Text] [Related]
19. Lithium-induced accumulation of inositol 1-phosphate during cholecystokinin octapeptide- and acetylcholine-stimulated phosphatidylinositol breakdown in dispersed mouse pancreas acinar cells. Hokin-Neaverson M; Sadeghian K J Biol Chem; 1984 Apr; 259(7):4346-52. PubMed ID: 6323467 [TBL] [Abstract][Full Text] [Related]
20. Surgical sympathetic denervation increases alpha 1-adrenoceptor-mediated accumulation of myo-inositol trisphosphate and muscle contraction in rabbit iris dilator smooth muscle. Akhtar RA; Abdel-Latif AA J Neurochem; 1986 Jan; 46(1):96-104. PubMed ID: 2999340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]