BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28264649)

  • 1. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans.
    Bekpen C; Künzel S; Xie C; Eaaswarkhanth M; Lin YL; Gokcumen O; Akdis CA; Tautz D
    BMC Genomics; 2017 Mar; 18(1):222. PubMed ID: 28264649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of SPATA31 copy number variable genes in human lifespan.
    Bekpen C; Xie C; Nebel A; Tautz D
    Aging (Albany NY); 2018 Apr; 10(4):674-688. PubMed ID: 29676996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evolutionary driver of interspersed segmental duplications in primates.
    Cantsilieris S; Sunkin SM; Johnson ME; Anaclerio F; Huddleston J; Baker C; Dougherty ML; Underwood JG; Sulovari A; Hsieh P; Mao Y; Catacchio CR; Malig M; Welch AE; Sorensen M; Munson KM; Jiang W; Girirajan S; Ventura M; Lamb BT; Conlon RA; Eichler EE
    Genome Biol; 2020 Aug; 21(1):202. PubMed ID: 32778141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human core duplicon gene families: game changers or game players?
    Bekpen C; Tautz D
    Brief Funct Genomics; 2019 Nov; 18(6):402-411. PubMed ID: 31529038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of human segmental duplications and the core duplicon hypothesis.
    Marques-Bonet T; Eichler EE
    Cold Spring Harb Symp Quant Biol; 2009; 74():355-62. PubMed ID: 19717539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23.
    Antonell A; de Luis O; Domingo-Roura X; Pérez-Jurado LA
    Genome Res; 2005 Sep; 15(9):1179-88. PubMed ID: 16140988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Variation Evolution at the 15q11-q13 Disease-Associated Locus.
    Paparella A; L'Abbate A; Palmisano D; Chirico G; Porubsky D; Catacchio CR; Ventura M; Eichler EE; Maggiolini FAM; Antonacci F
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.
    Niu AL; Wang YQ; Zhang H; Liao CH; Wang JK; Zhang R; Che J; Su B
    BMC Evol Biol; 2011 Oct; 11():298. PubMed ID: 21988730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex genomic rearrangements lead to novel primate gene function.
    Ciccarelli FD; von Mering C; Suyama M; Harrington ED; Izaurralde E; Bork P
    Genome Res; 2005 Mar; 15(3):343-51. PubMed ID: 15710750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primate segmental duplication creates novel promoters for the LRRC37 gene family within the 17q21.31 inversion polymorphism region.
    Bekpen C; Tastekin I; Siswara P; Akdis CA; Eichler EE
    Genome Res; 2012 Jun; 22(6):1050-8. PubMed ID: 22419166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary Dynamics of the POTE Gene Family in Human and Nonhuman Primates.
    Maggiolini FAM; Mercuri L; Antonacci F; Anaclerio F; Calabrese FM; Lorusso N; L'Abbate A; Sorensen M; Giannuzzi G; Eichler EE; Catacchio CR; Ventura M
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32085667
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure and evolution of the filaggrin gene repeated region in primates.
    Romero V; Hosomichi K; Nakaoka H; Shibata H; Inoue I
    BMC Evol Biol; 2017 Jan; 17(1):10. PubMed ID: 28077068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and evolution of the novel gene family FAM90A in primates originated by multiple duplication and rearrangement events.
    Bosch N; Cáceres M; Cardone MF; Carreras A; Ballana E; Rocchi M; Armengol L; Estivill X
    Hum Mol Genet; 2007 Nov; 16(21):2572-82. PubMed ID: 17684299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel gene family NBPF: intricate structure generated by gene duplications during primate evolution.
    Vandepoele K; Van Roy N; Staes K; Speleman F; van Roy F
    Mol Biol Evol; 2005 Nov; 22(11):2265-74. PubMed ID: 16079250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation.
    Courseaux A; Richard F; Grosgeorge J; Ortola C; Viale A; Turc-Carel C; Dutrillaux B; Gaudray P; Nahon JL
    Genome Res; 2003 Mar; 13(3):369-81. PubMed ID: 12618367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of microsatellite pairs with segmental duplications in insect genomes.
    Behura SK; Severson DW
    BMC Genomics; 2013 Dec; 14():907. PubMed ID: 24359442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retained duplications and deletions of CYP2C genes among primates.
    Chaney ME; Piontkivska H; Tosi AJ
    Mol Phylogenet Evol; 2018 Aug; 125():204-212. PubMed ID: 29631055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a genomic reservoir for new TRIM genes in primate genomes.
    Han K; Lou DI; Sawyer SL
    PLoS Genet; 2011 Dec; 7(12):e1002388. PubMed ID: 22144910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: the sulfotransferase 1A gene family example.
    Bradley ME; Benner SA
    BMC Evol Biol; 2005 Mar; 5():22. PubMed ID: 15752422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-human primate BAC resource to study interchromosomal segmental duplications.
    Kirsch S; Hodler C; Schempp W
    Cytogenet Genome Res; 2009; 125(4):253-9. PubMed ID: 19864887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.