BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28264649)

  • 21. Segmental duplications and their variation in a complete human genome.
    Vollger MR; Guitart X; Dishuck PC; Mercuri L; Harvey WT; Gershman A; Diekhans M; Sulovari A; Munson KM; Lewis AP; Hoekzema K; Porubsky D; Li R; Nurk S; Koren S; Miga KH; Phillippy AM; Timp W; Ventura M; Eichler EE
    Science; 2022 Apr; 376(6588):eabj6965. PubMed ID: 35357917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenomic analysis reveals ancient segmental duplications in the human genome.
    Hafeez M; Shabbir M; Altaf F; Abbasi AA
    Mol Phylogenet Evol; 2016 Jan; 94(Pt A):95-100. PubMed ID: 26327327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2.
    Książkiewicz M; Rychel S; Nelson MN; Wyrwa K; Naganowska B; Wolko B
    BMC Genomics; 2016 Oct; 17(1):820. PubMed ID: 27769166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids.
    Münch C; Kirsch S; Fernandes AM; Schempp W
    BMC Evol Biol; 2008 Oct; 8():269. PubMed ID: 18831734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene structure variation in segmental duplication block C of human chromosome 7q 11.23 during primate evolution.
    Kim YJ; Ahn K; Gim JA; Oh MH; Han K; Kim HS
    Gene; 2015 Dec; 573(2):285-95. PubMed ID: 26196062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana.
    Cannon SB; Mitra A; Baumgarten A; Young ND; May G
    BMC Plant Biol; 2004 Jun; 4():10. PubMed ID: 15171794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22.
    Bailey JA; Yavor AM; Viggiano L; Misceo D; Horvath JE; Archidiacono N; Schwartz S; Rocchi M; Eichler EE
    Am J Hum Genet; 2002 Jan; 70(1):83-100. PubMed ID: 11731936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular evolution of DNMT1 in vertebrates: Duplications in marsupials followed by positive selection.
    Alvarez-Ponce D; Torres-Sánchez M; Feyertag F; Kulkarni A; Nappi T
    PLoS One; 2018; 13(4):e0195162. PubMed ID: 29621315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates.
    Arroyo JI; Hoffmann FG; Opazo JC
    Mol Phylogenet Evol; 2012 Jun; 63(3):768-76. PubMed ID: 22405815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the primate TRIM gene family reveals the recent evolution in primates.
    Qiu S; Liu H; Jian Z; Fan Z; Liu S; Xing J; Li J
    Mol Genet Genomics; 2020 Sep; 295(5):1281-1294. PubMed ID: 32564135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution.
    Jiang Z; Tang H; Ventura M; Cardone MF; Marques-Bonet T; She X; Pevzner PA; Eichler EE
    Nat Genet; 2007 Nov; 39(11):1361-8. PubMed ID: 17922013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serial segmental duplications during primate evolution result in complex human genome architecture.
    Stankiewicz P; Shaw CJ; Withers M; Inoue K; Lupski JR
    Genome Res; 2004 Nov; 14(11):2209-20. PubMed ID: 15520286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid.
    Ying M; Zhan Z; Wang W; Chen D
    Gene; 2009 Nov; 447(2):72-85. PubMed ID: 19664694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary origin and human-specific expansion of a cancer/testis antigen gene family.
    Zhang Q; Su B
    Mol Biol Evol; 2014 Sep; 31(9):2365-75. PubMed ID: 24916032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus.
    Maggiolini FAM; Cantsilieris S; D'Addabbo P; Manganelli M; Coe BP; Dumont BL; Sanders AD; Pang AWC; Vollger MR; Palumbo O; Palumbo P; Accadia M; Carella M; Eichler EE; Antonacci F
    PLoS Genet; 2019 Mar; 15(3):e1008075. PubMed ID: 30917130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling segmental duplications in the human genome.
    Abdullaev ET; Umarova IR; Arndt PF
    BMC Genomics; 2021 Jul; 22(1):496. PubMed ID: 34215180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes.
    Symmons O; Váradi A; Arányi T
    Mol Biol Evol; 2008 Dec; 25(12):2601-13. PubMed ID: 18791038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circular DNA intermediates in the generation of large human segmental duplications.
    Chicote JU; López-Sánchez M; Marquès-Bonet T; Callizo J; Pérez-Jurado LA; García-España A
    BMC Genomics; 2020 Aug; 21(1):593. PubMed ID: 32847497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication.
    Dennis MY; Nuttle X; Sudmant PH; Antonacci F; Graves TA; Nefedov M; Rosenfeld JA; Sajjadian S; Malig M; Kotkiewicz H; Curry CJ; Shafer S; Shaffer LG; de Jong PJ; Wilson RK; Eichler EE
    Cell; 2012 May; 149(4):912-22. PubMed ID: 22559943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.