These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 282649)
21. The subcellular distribution of peptides immunoreactive for the carboxyl-terminal extension of cholecystokinin in rat brain. Allard LR; Beinfeld MC Neuropeptides; 1985 Jun; 6(3):239-45. PubMed ID: 4022279 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the release of cholecystokinin-8 from isolated nerve terminals and comparison with exocytosis of classical transmitters. Verhage M; Ghijsen WE; Nicholls DG; Wiegant VM J Neurochem; 1991 Apr; 56(4):1394-400. PubMed ID: 1672149 [TBL] [Abstract][Full Text] [Related]
24. In vitro release of cholecystokinin octapeptide-like immunoreactivity from rat brain synaptosomes. Klaff LJ; Hudson A; Sheppard M; Tyler M S Afr Med J; 1981 Jan; 59(5):158-60. PubMed ID: 7455849 [TBL] [Abstract][Full Text] [Related]
25. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Weihe E; Tao-Cheng JH; Schäfer MK; Erickson JD; Eiden LE Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3547-52. PubMed ID: 8622973 [TBL] [Abstract][Full Text] [Related]
26. The stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence. De Belleroche JS; Bradford HF J Neurochem; 1972 Jul; 19(7):1817-9. PubMed ID: 4537789 [No Abstract] [Full Text] [Related]
27. Stereoselectivity of catecholamine uptake by brain synaptosomes: studies with ephedrine, methylphenidate and phenyl-2-piperidyl carbinol. Hendley ED; Snyder SH; Fauley JJ; LaPidus JB J Pharmacol Exp Ther; 1972 Oct; 183(1):103-16. PubMed ID: 5080026 [No Abstract] [Full Text] [Related]
28. Light and electron microscopic immunocytochemical analysis of the neurovascular relationships of choline acetyltransferase and vasoactive intestinal polypeptide nerve terminals in the rat cerebral cortex. Chédotal A; Umbriaco D; Descarries L; Hartman BK; Hamel E J Comp Neurol; 1994 May; 343(1):57-71. PubMed ID: 8027437 [TBL] [Abstract][Full Text] [Related]
29. Release of amino-acids and neurosecretory substances after stimulation of nerve-endings (synaptosomes) isolated from the hypothalamus. Edwardson JA; Bennett GW; Bradford HF Nature; 1972 Dec; 240(5383):554-6. PubMed ID: 4346709 [No Abstract] [Full Text] [Related]
30. Turnover of proteins in subcellular fractions of rat cerebral cortex. Rodrĩguez de Lores Arn ; Alberici de Canal M; De Robertis E Brain Res; 1971 Aug; 31(1):179-84. PubMed ID: 5570653 [No Abstract] [Full Text] [Related]
31. Evidence for the net accumulation of glycine into a synaptosomal fraction isolated from the telencephalon and spinal cord of the rat. Aprison MH; McBride WJ Life Sci I; 1973 May; 12(10):449-58. PubMed ID: 4696605 [No Abstract] [Full Text] [Related]
32. gamma-Aminobutyric acid (GABA) stimulates somatostatin release following activation of a GABA uptake carrier located on somatostatin nerve endings of rat cerebral cortex. Raiteri M; Bonanno G; Fedele E; Fontana G; Gemignani A J Pharmacol Exp Ther; 1991 Jan; 256(1):88-93. PubMed ID: 1671101 [TBL] [Abstract][Full Text] [Related]
33. Receptors for vasoactive intestinal polypeptide on isolated synaptosomes from rat cerebral cortex. Heterogeneity of binding and desensitization of receptors. Staun-Olsen P; Ottesen B; Bartels PD; Nielsen MH; Gammeltoft S; Fahrenkrug J J Neurochem; 1982 Nov; 39(5):1242-51. PubMed ID: 6288868 [No Abstract] [Full Text] [Related]
34. Choline metabolism in the cerebral cortex of guinea pigs. Stable-bound acetylcholine. Barker LA; Dowdall MJ; Whittaker VP Biochem J; 1972 Dec; 130(4):1063-75. PubMed ID: 4656793 [TBL] [Abstract][Full Text] [Related]
35. [Synaptosomal transport of cerebral tryptophan nd tyrosine. Existence of systems with different uptake affinity]. Belin MF; Pujol JF Experientia; 1973 Apr; 29(4):411-3. PubMed ID: 4708323 [No Abstract] [Full Text] [Related]
36. Accumulation, subcellular localization and release of propranolol from synaptosomes of rat cerebral cortex. Street JA; Webb JG; Bright PS; Gaffney TE J Pharmacol Exp Ther; 1984 Apr; 229(1):154-61. PubMed ID: 6707931 [TBL] [Abstract][Full Text] [Related]
37. Localization of hypophysiotropic peptides and other biologically active peptides within the brain. Elde R; Hökfelt T Annu Rev Physiol; 1979; 41():587-602. PubMed ID: 107852 [TBL] [Abstract][Full Text] [Related]
39. Synapsin I in nerve terminals: selective association with small synaptic vesicles. Navone F; Greengard P; De Camilli P Science; 1984 Dec; 226(4679):1209-11. PubMed ID: 6438799 [TBL] [Abstract][Full Text] [Related]
40. The subcellular distribution of peptide histidine isoleucine amide-27-like peptides in rat brain and their release from rat cerebral cortical slices in vitro. Korchak DM; Gysling K; Beinfeld MC J Neurochem; 1985 Jan; 44(1):255-9. PubMed ID: 3917290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]