These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 28265025)
1. Complex terrain experiments in the New European Wind Atlas. Mann J; Angelou N; Arnqvist J; Callies D; Cantero E; Arroyo RC; Courtney M; Cuxart J; Dellwik E; Gottschall J; Ivanell S; Kühn P; Lea G; Matos JC; Palma JM; Pauscher L; Peña A; Rodrigo JS; Söderberg S; Vasiljevic N; Rodrigues CV Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265025 [TBL] [Abstract][Full Text] [Related]
2. Introduction Wind farms in complex terrains: an introduction. Alfredsson PH; Segalini A Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265020 [TBL] [Abstract][Full Text] [Related]
3. Linearized simulation of flow over wind farms and complex terrains. Segalini A Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265023 [TBL] [Abstract][Full Text] [Related]
4. Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Frehlich R Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185 [TBL] [Abstract][Full Text] [Related]
5. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar. Banakh VA; Smalikho IN; Falits AV Opt Express; 2017 Sep; 25(19):22679-22692. PubMed ID: 29041575 [TBL] [Abstract][Full Text] [Related]
6. Wind resource assessment in heterogeneous terrain. Vanderwel C; Placidi M; Ganapathisubramani B Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265030 [TBL] [Abstract][Full Text] [Related]
7. Sound propagation from a ridge wind turbine across a valley. Van Renterghem T Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265027 [TBL] [Abstract][Full Text] [Related]
8. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation. Breton SP; Sumner J; Sørensen JN; Hansen KS; Sarmast S; Ivanell S Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265021 [TBL] [Abstract][Full Text] [Related]
9. Bistatic Doppler wind lidar study for wind field measurement over complex terrain. Li S; Sun X; Shao L; Zhang C; Fang L; Guo W Appl Opt; 2022 May; 61(15):4370-4378. PubMed ID: 36256274 [TBL] [Abstract][Full Text] [Related]
10. Non-steady wind turbine response to daytime atmospheric turbulence. Nandi TN; Herrig A; Brasseur JG Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265026 [TBL] [Abstract][Full Text] [Related]
11. Wind turbine wake visualization and characteristics analysis by Doppler lidar. Wu S; Liu B; Liu J; Zhai X; Feng C; Wang G; Zhang H; Yin J; Wang X; Li R; Gallacher D Opt Express; 2016 May; 24(10):A762-80. PubMed ID: 27409950 [TBL] [Abstract][Full Text] [Related]
12. Edge technique Doppler lidar wind measurements with high vertical resolution. Korb CL; Gentry BM; Li SX Appl Opt; 1997 Aug; 36(24):5976-83. PubMed ID: 18259439 [TBL] [Abstract][Full Text] [Related]
13. Turbulence and entrainment length scales in large wind farms. Andersen SJ; Sørensen JN; Mikkelsen RF Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265028 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of low wind modeling approaches for two tall-stack databases. Paine R; Samani O; Kaplan M; Knipping E; Kumar N J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223 [TBL] [Abstract][Full Text] [Related]
15. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools. Yang XI; Meneveau C Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265022 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data. Banakh VA; Smalikho IN; Rahm S Opt Lett; 2014 Aug; 39(15):4321-4. PubMed ID: 25078167 [TBL] [Abstract][Full Text] [Related]
17. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer. Munters W; Meyers J Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265024 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of Low-Level Wind Shear by Ground-based 3D Lidar for Increased Flight Safety, Protection of Human Lives and Health. Nechaj P; Gaál L; Bartok J; Vorobyeva O; Gera M; Kelemen M; Polishchuk V Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752438 [TBL] [Abstract][Full Text] [Related]
19. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis. Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831 [TBL] [Abstract][Full Text] [Related]
20. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Debnath M; Santoni C; Leonardi S; Iungo GV Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]