These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28265030)

  • 1. Wind resource assessment in heterogeneous terrain.
    Vanderwel C; Placidi M; Ganapathisubramani B
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure.
    Placidi M; Ganapathisubramani B
    Boundary Layer Meteorol; 2018; 167(1):99-121. PubMed ID: 31258157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer.
    Munters W; Meyers J
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linearized simulation of flow over wind farms and complex terrains.
    Segalini A
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools.
    Yang XI; Meneveau C
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction Wind farms in complex terrains: an introduction.
    Alfredsson PH; Segalini A
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound propagation from a ridge wind turbine across a valley.
    Van Renterghem T
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulence and entrainment length scales in large wind farms.
    Andersen SJ; Sørensen JN; Mikkelsen RF
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of flow over two-dimensional multiple hill models.
    Li Q; Maeda T; Kamada Y; Yamada K
    Sci Total Environ; 2017 Dec; 609():1075-1084. PubMed ID: 28787781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind-Turbine and Wind-Farm Flows: A Review.
    Porté-Agel F; Bastankhah M; Shamsoddin S
    Boundary Layer Meteorol; 2020; 174(1):1-59. PubMed ID: 31975701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind farm power optimization through wake steering.
    Howland MF; Lele SK; Dabiri JO
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14495-14500. PubMed ID: 31262816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex terrain experiments in the New European Wind Atlas.
    Mann J; Angelou N; Arnqvist J; Callies D; Cantero E; Arroyo RC; Courtney M; Cuxart J; Dellwik E; Gottschall J; Ivanell S; Kühn P; Lea G; Matos JC; Palma JM; Pauscher L; Peña A; Rodrigo JS; Söderberg S; Vasiljevic N; Rodrigues CV
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second order structure functions for higher powers of turbulent velocity.
    Paraz F; Bandi MM
    J Phys Condens Matter; 2019 Dec; 31(48):484001. PubMed ID: 31387090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain.
    Fang J; Peringer A; Stupariu MS; Pǎtru-Stupariu I; Buttler A; Golay F; Porté-Agel F
    Sci Total Environ; 2018 Oct; 639():374-384. PubMed ID: 29793079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets.
    Cafiero G; Vassilicos JC
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20190038. PubMed ID: 31236057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale turbulence structures in a laboratory-scale boundary layer under steady and gusty wind inflows.
    Li WJ; Zhang Y; Yang B; Su JW; Zhang YW; Lu WZ; Shui QX; Wu XY; He YP; Gu ZL
    Sci Rep; 2019 Jun; 9(1):9373. PubMed ID: 31253852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel.
    Demarco G; Martins LGN; Bodmann BEJ; Puhales FS; Acevedo OC; Wittwer AR; Costa FD; Roberti DR; Loredo-Souza AM; Degrazia FC; Tirabassi T; Degrazia GA
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.
    Breton SP; Sumner J; Sørensen JN; Hansen KS; Sarmast S; Ivanell S
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary layers of air adjacent to cylinders: estimation of effective thickness and measurements on plant material.
    Nobel PS
    Plant Physiol; 1974 Aug; 54(2):177-81. PubMed ID: 16658855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations of boundary layer wind and turbulence of a landfalling tropical cyclone.
    Zhao Z; Gao R; Zhang JA; Zhu Y; Liu C; Chan PW; Wan Q
    Sci Rep; 2022 Jun; 12(1):11056. PubMed ID: 35773459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.