BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2826504)

  • 1. Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation.
    Brokaw CJ
    J Cell Biochem; 1987 Nov; 35(3):175-84. PubMed ID: 2826504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in intracellular pH induces phosphorylation of axonemal proteins for activation of flagellar motility in starfish sperm.
    Nakajima A; Morita M; Takemura A; Kamimura S; Okuno M
    J Exp Biol; 2005 Dec; 208(Pt 23):4411-8. PubMed ID: 16339861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.
    Morita M; Kitamura M; Nakajima A; Sri Susilo E; Takemura A; Okuno M
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):202-14. PubMed ID: 19235200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple protein kinase activities required for activation of sperm flagellar motility.
    Chaudhry PS; Creagh S; Yu N; Brokaw CJ
    Cell Motil Cytoskeleton; 1995; 32(1):65-79. PubMed ID: 8674135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of Triton X-100 soluble and insoluble protein substrates in a demembranated/reactivated human sperm model.
    Leclerc P; Gagnon C
    Mol Reprod Dev; 1996 Jun; 44(2):200-11. PubMed ID: 9115718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses.
    Cook SP; Brokaw CJ; Muller CH; Babcock DF
    Dev Biol; 1994 Sep; 165(1):10-9. PubMed ID: 8088428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility.
    Wood CD; Nishigaki T; Tatsu Y; Yumoto N; Baba SA; Whitaker M; Darszon A
    Dev Biol; 2007 Jun; 306(2):525-37. PubMed ID: 17467684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of activation state and flagellar wave form in epididymal rat sperm: evidence for the involvement of both Ca2+ and cAMP.
    Lindemann CB; Goltz JS; Kanous KS
    Cell Motil Cytoskeleton; 1987; 8(4):324-32. PubMed ID: 2826020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study.
    Inamdar MV; Kim T; Chung YK; Was AM; Xiang X; Wang CW; Takayama S; Lastoskie CM; Thomas FI; Sastry AM
    J Exp Biol; 2007 Nov; 210(Pt 21):3805-20. PubMed ID: 17951422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of microtubule sliding by a 36-kDa phosphoprotein in hamster sperm flagella.
    Si Y; Okuno M
    Mol Reprod Dev; 1999 Mar; 52(3):328-34. PubMed ID: 10206665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cyclic adenosine 3',5'-monophosphate-dependent protein kinase C activation is involved in the hyperactivation of boar spermatozoa.
    Harayama H; Miyake M
    Mol Reprod Dev; 2006 Sep; 73(9):1169-78. PubMed ID: 16779803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A soluble adenylyl cyclase from sea urchin spermatozoa.
    Nomura M; Beltrán C; Darszon A; Vacquier VD
    Gene; 2005 Jul; 353(2):231-8. PubMed ID: 15978750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperactivation of monkey spermatozoa is triggered by Ca2+ and completed by cAMP.
    Ishijima S; Mohri H; Overstreet JW; Yudin AI
    Mol Reprod Dev; 2006 Sep; 73(9):1129-39. PubMed ID: 16804884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms determining sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus).
    Zilli L; Schiavone R; Storelli C; Vilella S
    Biol Reprod; 2008 Aug; 79(2):356-66. PubMed ID: 18417709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility.
    Han Y; Haines CJ; Feng HL
    Arch Androl; 2007; 53(4):169-77. PubMed ID: 17852041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The signal flow and motor response controling chemotaxis of sea urchin sperm.
    Kaupp UB; Solzin J; Hildebrand E; Brown JE; Helbig A; Hagen V; Beyermann M; Pampaloni F; Weyand I
    Nat Cell Biol; 2003 Feb; 5(2):109-17. PubMed ID: 12563276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of flagellar proteins that initiate the activation of sperm motility in vivo.
    Bracho GE; Fritch JJ; Tash JS
    Biochem Biophys Res Commun; 1998 Jan; 242(1):231-7. PubMed ID: 9439641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation.
    Marquez B; Suarez SS
    Biol Reprod; 2004 Jun; 70(6):1626-33. PubMed ID: 14766720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between Ca2+, cyclic 3',5' adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation.
    Leclerc P; de Lamirande E; Gagnon C
    J Androl; 1998; 19(4):434-43. PubMed ID: 9733146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of protein tyrosine phosphorylation in boar sperm through a cAMP-dependent pathway.
    Kalab P; Peknicová J; Geussová G; Moos J
    Mol Reprod Dev; 1998 Nov; 51(3):304-14. PubMed ID: 9771651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.