BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 28265055)

  • 1. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in
    Puckett S; Trujillo C; Wang Z; Eoh H; Ioerger TR; Krieger I; Sacchettini J; Schnappinger D; Rhee KY; Ehrt S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2225-E2232. PubMed ID: 28265055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RegX3 Controls Glyoxylate Shunt and Mycobacteria Survival by Directly Regulating the Transcription of Isocitrate Lyase Gene in
    Xu Y; You D; Ye BC
    ACS Infect Dis; 2021 Apr; 7(4):927-936. PubMed ID: 33663204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple pathways for acetate assimilation in Streptomyces cinnamonensis.
    Akopiants K; Florova G; Li C; Reynolds KA
    J Ind Microbiol Biotechnol; 2006 Feb; 33(2):141-50. PubMed ID: 16187095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.
    Nakazawa M; Nishimura M; Inoue K; Ueda M; Inui H; Nakano Y; Miyatake K
    J Eukaryot Microbiol; 2011; 58(2):128-33. PubMed ID: 21332878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.
    McKinney JD; Höner zu Bentrup K; Muñoz-Elías EJ; Miczak A; Chen B; Chan WT; Swenson D; Sacchettini JC; Jacobs WR; Russell DG
    Nature; 2000 Aug; 406(6797):735-8. PubMed ID: 10963599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)- Malyl-CoA thioesterase.
    Erb TJ; Frerichs-Revermann L; Fuchs G; Alber BE
    J Bacteriol; 2010 Mar; 192(5):1249-58. PubMed ID: 20047909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis.
    Smith CV; Huang CC; Miczak A; Russell DG; Sacchettini JC; Höner zu Bentrup K
    J Biol Chem; 2003 Jan; 278(3):1735-43. PubMed ID: 12393860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-regulation of malate synthase in Mycobacterium tuberculosis H37Ra leads to reduced stress tolerance, persistence and survival in macrophages.
    Singh KS; Sharma R; Keshari D; Singh N; Singh SK
    Tuberculosis (Edinb); 2017 Sep; 106():73-81. PubMed ID: 28802408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1.
    Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M
    ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica.
    Borjian F; Han J; Hou J; Xiang H; Zarzycki J; Berg IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visceral adipose tissue specific persistence of Mycobacterium tuberculosis may be reason for the metabolic syndrome.
    Erol A
    Med Hypotheses; 2008 Aug; 71(2):222-8. PubMed ID: 18448263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and functional properties of the isocitrate lyase in the cyanobacterium Cyanothece sp. PCC 7424.
    Gründel M; Knoop H; Steuer R
    Microbiology (Reading); 2017 May; 163(5):731-744. PubMed ID: 28516845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrofitting fat metabolism.
    Pei L; Evans RM
    Cell Metab; 2009 Jun; 9(6):483-4. PubMed ID: 19490901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase.
    Krieger IV; Freundlich JS; Gawandi VB; Roberts JP; Gawandi VB; Sun Q; Owen JL; Fraile MT; Huss SI; Lavandera JL; Ioerger TR; Sacchettini JC
    Chem Biol; 2012 Dec; 19(12):1556-67. PubMed ID: 23261599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis.
    Gould TA; van de Langemheen H; Muñoz-Elías EJ; McKinney JD; Sacchettini JC
    Mol Microbiol; 2006 Aug; 61(4):940-7. PubMed ID: 16879647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systems chemical biology study of malate synthase and isocitrate lyase inhibition in Mycobacterium tuberculosis during active and NRP growth.
    May EE; Leitão A; Tropsha A; Oprea TI
    Comput Biol Chem; 2013 Dec; 47():167-80. PubMed ID: 24121675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and lithium exert differential effects on the central carbon metabolism of Debaryomyces hansenii through the glyoxylate shunt regulation.
    Ruiz-Pérez FS; Ruiz-Castilla FJ; Leal C; Martínez JL; Ramos J
    Yeast; 2023 Jul; 40(7):265-275. PubMed ID: 37170862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.
    Zhang S; Bryant DA
    J Biol Chem; 2015 May; 290(22):14019-30. PubMed ID: 25869135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation.
    Maloy SR; Bohlander M; Nunn WD
    J Bacteriol; 1980 Aug; 143(2):720-5. PubMed ID: 7009561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Activity of glyoxylate cycle during the culture of Rhodotorula gracilis in the presence of fatty acids and detergents].
    Ranaldi F; Vanni P; Giachetti E
    C R Seances Soc Biol Fil; 1996; 190(2-3):299-309. PubMed ID: 8869239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.