BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 28265055)

  • 41. The Glyoxylate Shunt, 60 Years On.
    Dolan SK; Welch M
    Annu Rev Microbiol; 2018 Sep; 72():309-330. PubMed ID: 30200852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Importance of malate synthase in the glyoxylate cycle of Ashbya gossypii for the efficient production of riboflavin.
    Sugimoto T; Kanamasa S; Kato T; Park EY
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):529-39. PubMed ID: 19343342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-range effects in anion-π interactions: their crucial role in the inhibition mechanism of Mycobacterium tuberculosis malate synthase.
    Bauzá A; Quiñonero D; Deyà PM; Frontera A
    Chemistry; 2014 Jun; 20(23):6985-90. PubMed ID: 24740694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ligand binding on to maize (Zea mays) malate synthase: a structural study.
    Beeckmans S; Khan AS; Kanarek L; Van Driessche E
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):413-21. PubMed ID: 7980399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection.
    Marrero J; Rhee KY; Schnappinger D; Pethe K; Ehrt S
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9819-24. PubMed ID: 20439709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Malate synthase expression is deregulated in the Pseudomonas aeruginosa cystic fibrosis isolate FRD1.
    Hagins JM; Scoffield J; Suh SJ; Silo-Suh L
    Can J Microbiol; 2011 Mar; 57(3):186-95. PubMed ID: 21358759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase.
    Cornah JE; Germain V; Ward JL; Beale MH; Smith SM
    J Biol Chem; 2004 Oct; 279(41):42916-23. PubMed ID: 15272001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis.
    Sharma V; Sharma S; Hoener zu Bentrup K; McKinney JD; Russell DG; Jacobs WR; Sacchettini JC
    Nat Struct Biol; 2000 Aug; 7(8):663-8. PubMed ID: 10932251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lessons Learnt and the Way Forward for Drug Development Against Isocitrate Lyase from
    Antil M; Gupta V
    Protein Pept Lett; 2022; 29(12):1031-1041. PubMed ID: 36201276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative analysis of malate synthase G from Mycobacterium tuberculosis and E. coli: role of ionic interaction in modulation of structural and functional properties.
    Kumar R; Bhakuni V
    Int J Biol Macromol; 2011 Dec; 49(5):917-22. PubMed ID: 21864568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A rheostat mechanism governs the bifurcation of carbon flux in mycobacteria.
    Murima P; Zimmermann M; Chopra T; Pojer F; Fonti G; Dal Peraro M; Alonso S; Sauer U; Pethe K; McKinney JD
    Nat Commun; 2016 Aug; 7():12527. PubMed ID: 27555519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis.
    Dunn MF; Ramírez-Trujillo JA; Hernández-Lucas I
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3166-3175. PubMed ID: 19684068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis.
    Borah K; Mendum TA; Hawkins ND; Ward JL; Beale MH; Larrouy-Maumus G; Bhatt A; Moulin M; Haertlein M; Strohmeier G; Pichler H; Forsyth VT; Noack S; Goulding CW; McFadden J; Beste DJV
    Mol Syst Biol; 2021 May; 17(5):e10280. PubMed ID: 33943004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.
    Okubo Y; Yang S; Chistoserdova L; Lidstrom ME
    J Bacteriol; 2010 Apr; 192(7):1813-23. PubMed ID: 20118267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets.
    Singh VK; Ghosh I
    Theor Biol Med Model; 2006 Aug; 3():27. PubMed ID: 16887020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glyoxylate cycle in the rat liver: effect of vitamin D3 treatment.
    Davis WL; Matthews JL; Goodman DB
    FASEB J; 1989 Mar; 3(5):1651-5. PubMed ID: 2537775
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii.
    Serrano JA; Bonete MJ
    Biochim Biophys Acta; 2001 Aug; 1520(2):154-62. PubMed ID: 11513957
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis.
    Micklinghoff JC; Breitinger KJ; Schmidt M; Geffers R; Eikmanns BJ; Bange FC
    J Bacteriol; 2009 Dec; 191(23):7260-9. PubMed ID: 19767422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 2-Aminopyridine Analogs Inhibit Both Enzymes of the Glyoxylate Shunt in
    McVey AC; Bartlett S; Kajbaf M; Pellacani A; Gatta V; Tammela P; Spring DR; Welch M
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260167
    [No Abstract]   [Full Text] [Related]  

  • 60. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence.
    Muñoz-Elías EJ; McKinney JD
    Nat Med; 2005 Jun; 11(6):638-44. PubMed ID: 15895072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.