These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28265595)

  • 1. Identification of the response of protein N-H vibrations in vibrational sum-frequency generation spectroscopy of aqueous protein films.
    Meister K; Paananen A; Bakker HJ
    Phys Chem Chem Phys; 2017 May; 19(17):10804-10807. PubMed ID: 28265595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. True Origin of Amide I Shifts Observed in Protein Spectra Obtained with Sum Frequency Generation Spectroscopy.
    Chiang KY; Matsumura F; Yu CC; Qi D; Nagata Y; Bonn M; Meister K
    J Phys Chem Lett; 2023 Jun; 14(21):4949-4954. PubMed ID: 37213084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressing interfacial water signals to assist the peak assignment of the N⁺-H stretching mode in sum frequency generation vibrational spectroscopy.
    Nguyen KT; Nguyen AV
    Phys Chem Chem Phys; 2015 Nov; 17(43):28534-8. PubMed ID: 26457564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.
    Fu L; Wang Z; Yan EC
    Chirality; 2014 Sep; 26(9):521-4. PubMed ID: 24610602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembly and Conformational Changes of Hydrophobin Classes at the Air-Water Interface.
    Meister K; Bäumer A; Szilvay GR; Paananen A; Bakker HJ
    J Phys Chem Lett; 2016 Oct; 7(20):4067-4071. PubMed ID: 27690211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface.
    Feng RJ; Li X; Zhang Z; Lu Z; Guo Y
    J Chem Phys; 2016 Dec; 145(24):244707. PubMed ID: 28049317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces.
    Inoue K; Nihonyanagi S; Singh PC; Yamaguchi S; Tahara T
    J Chem Phys; 2015 Jun; 142(21):212431. PubMed ID: 26049451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation.
    Singh PC; Nihonyanagi S; Yamaguchi S; Tahara T
    J Chem Phys; 2012 Sep; 137(9):094706. PubMed ID: 22957585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Vibrational Sum Frequency Generation Spectra of Interfacial Water on a Gold Surface: The Role of the Fermi Resonance.
    Shen H; Chen L; Zou X; Wu Q
    J Phys Chem B; 2024 Jul; 128(27):6638-6647. PubMed ID: 38922305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm(-1).
    Ma G; Liu J; Fu L; Yan EC
    Appl Spectrosc; 2009 May; 63(5):528-37. PubMed ID: 19470209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bulk Response of Carboxylic Acid Solutions Observed with Surface Sum-Frequency Generation Spectroscopy.
    Moll CJ; Versluis J; Bakker HJ
    J Phys Chem B; 2022 Jan; 126(1):270-277. PubMed ID: 34962792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water.
    Eftekhari-Bafrooei A; Borguet E
    J Am Chem Soc; 2010 Mar; 132(11):3756-61. PubMed ID: 20184315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces.
    Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF
    J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Bonds and Molecular Orientations of Supramolecular Structure between Barbituric Acid and Melamine Derivative at the Air/Water Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.
    Okuno M; Yamada S; Ohto T; Tada H; Nakanishi W; Ariga K; Ishibashi TA
    J Phys Chem Lett; 2020 Apr; 11(7):2422-2429. PubMed ID: 32163290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy.
    Nihonyanagi S; Yamaguchi S; Tahara T
    Chem Rev; 2017 Aug; 117(16):10665-10693. PubMed ID: 28378588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure at the air/water interface in the presence of phenol: a study using heterodyne-detected vibrational sum frequency generation and molecular dynamics simulation.
    Kusaka R; Ishiyama T; Nihonyanagi S; Morita A; Tahara T
    Phys Chem Chem Phys; 2018 Jan; 20(5):3002-3009. PubMed ID: 29075738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules.
    Devineau S; Inoue KI; Kusaka R; Urashima SH; Nihonyanagi S; Baigl D; Tsuneshige A; Tahara T
    Phys Chem Chem Phys; 2017 Apr; 19(16):10292-10300. PubMed ID: 28383588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-Bonding Structure at Zwitterionic Lipid/Water Interface.
    Ishiyama T; Terada D; Morita A
    J Phys Chem Lett; 2016 Jan; 7(2):216-20. PubMed ID: 26713682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.