These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 28265629)
1. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications. Russell SE; González Carballo JM; Orellana-Tavra C; Fairen-Jimenez D; Morris RE Dalton Trans; 2017 Mar; 46(12):3915-3920. PubMed ID: 28265629 [TBL] [Abstract][Full Text] [Related]
2. EPR spectroscopy of Cu(I)-NO adsorption complexes formed over Cu-ZSM-5 and Cu-MCM-22 zeolites. Umamaheswari V; Hartmann M; Pöppl A J Phys Chem B; 2005 Feb; 109(4):1537-46. PubMed ID: 16851125 [TBL] [Abstract][Full Text] [Related]
3. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia. Chen B; Xu R; Zhang R; Liu N Environ Sci Technol; 2014 Dec; 48(23):13909-16. PubMed ID: 25365767 [TBL] [Abstract][Full Text] [Related]
4. Microwave-assisted simple ion-exchange of ZSM-5-type zeolites with copper ions and their specific adsorption properties for N2 molecules at room temperature. Kuroda Y; Okamoto T; Kumashiro R; Yoshikawa Y; Nagao M Chem Commun (Camb); 2002 Aug; (16):1758-9. PubMed ID: 12196985 [TBL] [Abstract][Full Text] [Related]
5. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. Paolucci C; Parekh AA; Khurana I; Di Iorio JR; Li H; Albarracin Caballero JD; Shih AJ; Anggara T; Delgass WN; Miller JT; Ribeiro FH; Gounder R; Schneider WF J Am Chem Soc; 2016 May; 138(18):6028-48. PubMed ID: 27070199 [TBL] [Abstract][Full Text] [Related]
6. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431 [TBL] [Abstract][Full Text] [Related]
7. In-vitro anti-cancer activity of organic template-free hierarchical M (Cu, Ni)-modified ZSM-5 zeolites synthesized using silica source waste material. Jesudoss SK; Judith Vijaya J; Kaviyarasu K; Iyyappa Rajan P; Narayanan S; John Kennedy L J Photochem Photobiol B; 2018 Sep; 186():178-188. PubMed ID: 30075423 [TBL] [Abstract][Full Text] [Related]
8. Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro. Opländer C; Rösner J; Gombert A; Brodski A; Suvorava T; Grotheer V; van Faassen EE; Kröncke KD; Kojda G; Windolf J; Suschek CV Nitric Oxide; 2013 Nov; 35():152-64. PubMed ID: 24140456 [TBL] [Abstract][Full Text] [Related]
9. Copper-containing nitrite reductase: a DFT study of nitrite and nitric oxide adducts. Silaghi-Dumitrescu R J Inorg Biochem; 2006 Mar; 100(3):396-402. PubMed ID: 16472863 [TBL] [Abstract][Full Text] [Related]
10. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Wulfers MJ; Teketel S; Ipek B; Lobo RF Chem Commun (Camb); 2015 Mar; 51(21):4447-50. PubMed ID: 25679753 [TBL] [Abstract][Full Text] [Related]
11. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
12. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370 [TBL] [Abstract][Full Text] [Related]
13. IR Studies of the Cu Ions in Cu-Faujasites. Kuterasiński Ł; Podobiński J; Rutkowska-Zbik D; Datka J Molecules; 2019 Nov; 24(23):. PubMed ID: 31766618 [TBL] [Abstract][Full Text] [Related]
16. An in situ Al K-edge XAS investigation of the local environment of H+- and Cu+-exchanged USY and ZSM-5 zeolites. Drake IJ; Zhang Y; Gilles MK; Teris Liu CN; Nachimuthu P; Perera RC; Wakita H; Bell AT J Phys Chem B; 2006 Jun; 110(24):11665-76. PubMed ID: 16800461 [TBL] [Abstract][Full Text] [Related]
17. SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. Xie D; McCusker LB; Baerlocher C; Zones SI; Wan W; Zou X J Am Chem Soc; 2013 Jul; 135(28):10519-24. PubMed ID: 23782259 [TBL] [Abstract][Full Text] [Related]
18. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Snyder BER; Bols ML; Schoonheydt RA; Sels BF; Solomon EI Chem Rev; 2018 Mar; 118(5):2718-2768. PubMed ID: 29256242 [TBL] [Abstract][Full Text] [Related]
19. DFT calculations of EPR parameters for copper(II)-exchanged zeolites using cluster models. Ames WM; Larsen SC J Phys Chem A; 2010 Jan; 114(1):589-94. PubMed ID: 20000556 [TBL] [Abstract][Full Text] [Related]
20. CuH-ZSM-5 as hydrocarbon trap under cold start conditions. Navlani-García M; Puértolas B; Lozano-Castelló D; Cazorla-Amorós D; Navarro MV; García T Environ Sci Technol; 2013 Jun; 47(11):5851-7. PubMed ID: 23634959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]