These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28265765)

  • 61. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level.
    Brunner NA; Siebers B; Hensel R
    Extremophiles; 2001 Apr; 5(2):101-9. PubMed ID: 11354453
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Endosymbiotic theories for eukaryote origin.
    Martin WF; Garg S; Zimorski V
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1678):20140330. PubMed ID: 26323761
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship.
    Michels PA; Marchand M; Kohl L; Allert S; Wierenga RK; Opperdoes FR
    Eur J Biochem; 1991 Jun; 198(2):421-8. PubMed ID: 2040303
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interaction between adenylate kinase 3 and glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii.
    Zhang Y; Launay H; Liu F; Lebrun R; Gontero B
    FEBS J; 2018 Jul; 285(13):2495-2503. PubMed ID: 29727516
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate.
    Gornik SG; Febrimarsa ; Cassin AM; MacRae JI; Ramaprasad A; Rchiad Z; McConville MJ; Bacic A; McFadden GI; Pain A; Waller RF
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5767-72. PubMed ID: 25902514
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in DNA Repair.
    Kosova AA; Khodyreva SN; Lavrik OI
    Biochemistry (Mosc); 2017 Jun; 82(6):643-654. PubMed ID: 28601074
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties.
    Brunner NA; Brinkmann H; Siebers B; Hensel R
    J Biol Chem; 1998 Mar; 273(11):6149-56. PubMed ID: 9497334
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Endosymbiosis in Nature and the Gut-Brain Axis.
    Papakonstantinou E; Dragoumani K; Bacopoulou F; Chrousos GP; Eliopoulos E; Vlachakis D
    Adv Exp Med Biol; 2023; 1423():245-250. PubMed ID: 37525051
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Primary structure and phylogenetic relationships of glyceraldehyde-3-phosphate dehydrogenase genes of free-living and parasitic diplomonad flagellates.
    Rozario C; Morin L; Roger AJ; Smith MW; Müller M
    J Eukaryot Microbiol; 1996; 43(4):330-40. PubMed ID: 8768438
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.
    Omumasaba CA; Okai N; Inui M; Yukawa H
    J Mol Microbiol Biotechnol; 2004; 8(2):91-103. PubMed ID: 15925900
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural basis of light-induced redox regulation in the Calvin-Benson cycle in cyanobacteria.
    McFarlane CR; Shah NR; Kabasakal BV; Echeverria B; Cotton CAR; Bubeck D; Murray JW
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20984-20990. PubMed ID: 31570616
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death.
    Nakajima H; Itakura M; Kubo T; Kaneshige A; Harada N; Izawa T; Azuma YT; Kuwamura M; Yamaji R; Takeuchi T
    J Biol Chem; 2017 Mar; 292(11):4727-4742. PubMed ID: 28167533
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phenylephrine protects cardiomyocytes from starvation-induced apoptosis by increasing glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity.
    Yao LL; Wang YG; Liu XJ; Zhou Y; Li N; Liu J; Zhu YC
    J Cell Physiol; 2012 Oct; 227(10):3518-27. PubMed ID: 22252379
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reversible nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase upon serum depletion.
    Schmitz HD
    Eur J Cell Biol; 2001 Jun; 80(6):419-27. PubMed ID: 11484933
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.
    Henry E; Fung N; Liu J; Drakakaki G; Coaker G
    PLoS Genet; 2015 Apr; 11(4):e1005199. PubMed ID: 25918875
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reconstitution of membrane fusion between pancreatic islet secretory granules and plasma membranes: catalysis by a protein constituent recognized by monoclonal antibodies directed against glyceraldehyde-3-phosphate dehydrogenase.
    Han X; Ramanadham S; Turk J; Gross RW
    Biochim Biophys Acta; 1998 Nov; 1414(1-2):95-107. PubMed ID: 9804907
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Substrate Channeling via a Transient Protein-Protein Complex: The case of D-Glyceraldehyde-3-Phosphate Dehydrogenase and L-Lactate Dehydrogenase.
    Svedružić ŽM; Odorčić I; Chang CH; Svedružić D
    Sci Rep; 2020 Jun; 10(1):10404. PubMed ID: 32591631
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers.
    Liu T; Fang H; Liu J; Reid S; Hou J; Zhou T; Tian Z; Song B; Xie C
    Plant Cell Environ; 2017 Dec; 40(12):3043-3054. PubMed ID: 28940493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.