BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 28265782)

  • 1. Predictors of acute inefficacy and the radiofrequency energy time required for cavotricuspid isthmus-dependent atrial flutter ablation.
    Pérez-Rodon J; Rodriguez-García J; Sarrias-Merce A; Rivas-Gandara N; Roca-Luque I; Francisco-Pascual J; Santos-Ortega A; Martín-Sánchez G; Ferreira-González I; Rodríguez-Palomares J; Evangelista-Masip A; García-Dorado D; Moya-Mitjans À
    J Interv Card Electrophysiol; 2017 Jun; 49(1):83-91. PubMed ID: 28265782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cavotricuspid isthmus morphology in CRYO versus radiofrequency ablation of typical atrial flutter.
    Saygi S; Bastani H; Drca N; Insulander P; Wredlert C; Schwieler J; Jensen-Urstad M
    Scand Cardiovasc J; 2017 Apr; 51(2):69-73. PubMed ID: 27826985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First clinical experience of a dedicated irrigated-tip radiofrequency ablation catheter for the ablation of cavotricuspid isthmus-dependent atrial flutter.
    Knecht S; Burch F; Reichlin T; Spies F; Mühl A; Altmann D; Ammann P; Schaer B; Osswald S; Sticherling C; Kühne M
    Clin Res Cardiol; 2018 Apr; 107(4):281-286. PubMed ID: 29204691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold-tip versus contact-sensing catheter for cavotricuspid isthmus ablation: A comparative study.
    Gül EE; Boles U; Haseeb S; Hopman WM; Chacko S; Simpson C; Abdollah H; Michael K; Baranchuk A; Redfearn D; Glover B
    Turk Kardiyol Dern Ars; 2018 Sep; 46(6):464-470. PubMed ID: 30204137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atrial fibrillation inducibility during cavotricuspid isthmus-dependent atrial flutter ablation as a predictor of clinical atrial fibrillation. A meta-analysis.
    Romero J; Diaz JC; Di Biase L; Kumar S; Briceno D; Tedrow UB; Valencia CR; Baldinger SH; Koplan B; Epstein LM; John R; Michaud GF; Stevenson WG
    J Interv Card Electrophysiol; 2017 Apr; 48(3):307-315. PubMed ID: 28070875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous pulmonary vein cryoablation and cavotricuspid isthmus radiofrequency ablation in patients with combined atrial fibrillation and typical atrial flutter.
    Peyrol M; Sbragia P; Ronchard T; Cautela J; Villacampa C; Laine M; Bonello L; Thuny F; Paganelli F; Lévy S
    J Electrocardiol; 2015; 48(4):729-33. PubMed ID: 25796100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomy of the cavotricuspid isthmus for radiofrequency ablation in typical atrial flutter.
    Baccillieri MS; Rizzo S; De Gaspari M; Paradiso B; Thiene G; Verlato R; Basso C
    Heart Rhythm; 2019 Nov; 16(11):1611-1618. PubMed ID: 31150815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of atrial electrocardiographic amplitude with radiofrequency energy required to ablate cavotricuspid isthmus-dependent atrial flutter.
    Rotter M; Scavée C; Sacher F; Sanders P; Takahashi Y; Hsu LF; Rostock T; Hocini M; Jaïs P; Clementy J; Haïssaguerre M
    Heart Rhythm; 2005 Mar; 2(3):263-9. PubMed ID: 15851316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical prediction of cavotricuspid isthmus dependence in patients referred for catheter ablation of "typical" atrial flutter.
    Lickfett L; Calkins H; Nasir K; Dickfeld T; Eldadah Z; Jayam V; Leng C; Tomaselli G; Donahue K; Halperin H; Lüderitz B; Berger R
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):969-73. PubMed ID: 16174018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of cavotricuspid isthmus length on total radiofrequency energy to cure right atrial flutter.
    Schernthaner C; Haidinger B; Brandt MC; Kraus J; Danmayr F; Hoppe UC; Strohmer B
    Kardiol Pol; 2016; 74(3):237-43. PubMed ID: 26305365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective randomized comparison of durability of bidirectional conduction block in the cavotricuspid isthmus in patients after ablation of common atrial flutter using cryothermy and radiofrequency energy: the CRYOTIP study.
    Kuniss M; Vogtmann T; Ventura R; Willems S; Vogt J; Grönefeld G; Hohnloser S; Zrenner B; Erdogan A; Klein G; Lemke B; Neuzner J; Neumann T; Hamm CW; Pitschner HF
    Heart Rhythm; 2009 Dec; 6(12):1699-705. PubMed ID: 19959115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of previous cardiac surgery on long-term outcome of cavotricuspid isthmus-dependent atrial flutter ablation.
    Dallaglio PD; Anguera I; Jiménez-Candil J; Peinado R; García-Seara J; Arcocha MF; Macías R; Herreros B; Quesada A; Hernández-Madrid A; Alvarez M; Di Marco A; Filgueiras D; Matía R; Cequier A; Sabaté X
    Europace; 2016 Jun; 18(6):873-80. PubMed ID: 26506836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Dormant transisthmus conduction" revealed by adenosine after cavotricuspid isthmus ablation.
    Lehrmann H; Weber R; Park CI; Allgeier J; Schiebeling-Römer J; Arentz T; Jadidi A
    Heart Rhythm; 2012 Dec; 9(12):1942-6. PubMed ID: 22906533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomized comparison of cavotricuspid isthmus ablation for atrial flutter using an open irrigation-tip versus a large-tip radiofrequency ablation catheter.
    Ilg KJ; Kühne M; Crawford T; Chugh A; Jongnarangsin K; Good E; Pelosi F; Bogun F; Morady F; Oral H
    J Cardiovasc Electrophysiol; 2011 Sep; 22(9):1007-12. PubMed ID: 21453368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiofrequency ablation of the cavotricuspid isthmus for management of atrial flutter in patients with congenital heart disease after tricuspid valve surgery: A single-center experience.
    Kella DK; Yasin OZ; Isath AM; McLeod CJ; Canon B; Asirvatham SJ; Wackel PL
    Heart Rhythm; 2019 Nov; 16(11):1621-1628. PubMed ID: 31048063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum electrogram-guided ablation of cavotricuspid isthmus-dependent atrial flutter.
    Cheng T; Liu Y; Kongstad O; Hertervig E; Yuan S
    J Electrocardiol; 2013; 46(6):670-5. PubMed ID: 23786856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping-guided ablation of the cavotricuspid isthmus: a novel simplified approach to radiofrequency catheter ablation of isthmus-dependent atrial flutter.
    Maruyama M; Kobayashi Y; Miyauchi Y; Iwasaki YK; Morita N; Miyamoto S; Tadera T; Ino T; Atarashi H; Katoh T; Takano T
    Heart Rhythm; 2006 Jun; 3(6):665-73. PubMed ID: 16731467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of virtual unipolar electrograms for detecting isthmus block during radiofrequency ablation of typical atrial flutter.
    Lin YJ; Tai CT; Huang JL; Liu TY; Lee PC; Ting CT; Chen SA
    J Am Coll Cardiol; 2004 Jun; 43(12):2300-4. PubMed ID: 15193697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and long-term efficacy and safety of catheter cryoablation of the cavotricuspid isthmus for treatment of type 1 atrial flutter.
    Feld GK; Daubert JP; Weiss R; Miles WM; Pelkey W;
    Heart Rhythm; 2008 Jul; 5(7):1009-14. PubMed ID: 18598956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new methodology for atrial flutter ablation by direct visualization of cavotricuspid conduction with voltage gradient mapping: a comparison to standard techniques.
    Bailin SJ; Johnson WB; Jumrussirikul P; Sorentino D; West R
    Europace; 2013 Jul; 15(7):1013-8. PubMed ID: 23447574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.