BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28265982)

  • 1. Structure-Promiscuity Relationship Puzzles-Extensively Assayed Analogs with Large Differences in Target Annotations.
    Hu Y; Jasial S; Gilberg E; Bajorath J
    AAPS J; 2017 May; 19(3):856-864. PubMed ID: 28265982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the Degree of Promiscuity of Extensively Assayed Compounds.
    Jasial S; Hu Y; Bajorath J
    PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity.
    Dimova D; Hu Y; Bajorath J
    J Med Chem; 2012 Nov; 55(22):10220-8. PubMed ID: 23050678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rationalizing Promiscuity Cliffs.
    Dimova D; Bajorath J
    ChemMedChem; 2018 Mar; 13(6):490-494. PubMed ID: 29024534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Assessment of Molecular Selectivity at the Level of Targets, Bioactive Compounds, and Structural Analogues.
    Hu Y; Bajorath J
    ChemMedChem; 2016 Jun; 11(12):1362-70. PubMed ID: 26358784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs.
    Dimova D; Stumpfe D; Bajorath J
    J Med Chem; 2014 Aug; 57(15):6553-63. PubMed ID: 25014781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Molecular Promiscuity Evaluation Through Assay Profiles.
    Avram S; Curpan R; Bora A; Neanu C; Halip L
    Pharm Res; 2018 Oct; 35(11):240. PubMed ID: 30338400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic identification of activity cliffs with dual-atom replacements and their rationalization on the basis of single-atom replacement analogs and X-ray structures.
    Hu H; Bajorath J
    Chem Biol Drug Des; 2022 Feb; 99(2):308-319. PubMed ID: 34806310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning.
    Feldmann C; Yonchev D; Bajorath J
    Biomolecules; 2020 Nov; 10(12):. PubMed ID: 33260876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What is the likelihood of an active compound to be promiscuous? Systematic assessment of compound promiscuity on the basis of PubChem confirmatory bioassay data.
    Hu Y; Bajorath J
    AAPS J; 2013 Jul; 15(3):808-15. PubMed ID: 23605807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular scaffolds with high propensity to form multi-target activity cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Apr; 50(4):500-10. PubMed ID: 20361784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity.
    Gilberg E; Stumpfe D; Bajorath J
    F1000Res; 2017; 6():. PubMed ID: 28928939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets.
    Dimova D; Heikamp K; Stumpfe D; Bajorath J
    J Med Chem; 2013 Apr; 56(8):3339-45. PubMed ID: 23527828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Many approved drugs have bioactive analogs with different target annotations.
    Hu Y; Lounkine E; Bajorath J
    AAPS J; 2014 Jul; 16(4):847-59. PubMed ID: 24871342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.
    Miljković F; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds.
    Wassermann AM; Dimova D; Bajorath J
    Chem Biol Drug Des; 2011 Aug; 78(2):224-8. PubMed ID: 21624090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome.
    Miljković F; Bajorath J
    Future Sci OA; 2019 Jul; 5(7):FSO404. PubMed ID: 31428450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.