BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28266149)

  • 1. IODNE: An integrated optimization method for identifying the deregulated subnetwork for precision medicine in cancer.
    Mounika Inavolu S; Renbarger J; Radovich M; Vasudevaraja V; Kinnebrew GH; Zhang S; Cheng L
    CPT Pharmacometrics Syst Pharmacol; 2017 Mar; 6(3):168-176. PubMed ID: 28266149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of significantly mutated subnetworks in the breast cancer genome.
    Ajwad R; Domaratzki M; Liu Q; Feizi N; Hu P
    Sci Rep; 2021 Jan; 11(1):642. PubMed ID: 33436820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GTA: a game theoretic approach to identifying cancer subnetwork markers.
    Farahmand S; Goliaei S; Ansari-Pour N; Razaghi-Moghadam Z
    Mol Biosyst; 2016 Mar; 12(3):818-25. PubMed ID: 26750920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Analysis of ChIP Sequencing and Gene Expression Dataset in Breast Cancer.
    Liu P; Jiang W; Zhou S; Gao J; Zhang H
    Pathol Oncol Res; 2017 Apr; 23(2):361-368. PubMed ID: 27654269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smell Detection Agent Optimisation Framework and Systems Biology Approach to Detect Dys-Regulated Subnetwork in Cancer Data.
    Sivan SL; Sukumara Pillai VCS
    Biomolecules; 2021 Dec; 12(1):. PubMed ID: 35053185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward precision medicine of breast cancer.
    Carels N; Spinassé LB; Tilli TM; Tuszynski JA
    Theor Biol Med Model; 2016 Feb; 13():7. PubMed ID: 26925829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying protein interaction subnetworks by a bagging Markov random field-based method.
    Chen L; Xuan J; Riggins RB; Wang Y; Clarke R
    Nucleic Acids Res; 2013 Jan; 41(2):e42. PubMed ID: 23161673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information.
    Yue Z; Li HT; Yang Y; Hussain S; Zheng CH; Xia J; Chen Y
    Oncotarget; 2016 Jun; 7(24):36092-36100. PubMed ID: 27150055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of sample-specific regulations using integrative network level analysis.
    Liu C; Louhimo R; Laakso M; Lehtonen R; Hautaniemi S
    BMC Cancer; 2015 Apr; 15():319. PubMed ID: 25928379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis.
    Wu T; Wang X; Li J; Song X; Wang Y; Wang Y; Zhang L; Li Z; Tian J
    PLoS One; 2015; 10(6):e0131183. PubMed ID: 26126114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms.
    Grimm LJ; Zhang J; Mazurowski MA
    J Magn Reson Imaging; 2015 Oct; 42(4):902-7. PubMed ID: 25777181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms associated with breast cancer based on integrated gene expression profiling by bioinformatics analysis.
    Wu D; Han B; Guo L; Fan Z
    J Obstet Gynaecol; 2016 Jul; 36(5):615-21. PubMed ID: 26804550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide screen identifies a novel prognostic signature for breast cancer survival.
    Mao XY; Lee MJ; Zhu J; Zhu C; Law SM; Snijders AM
    Oncotarget; 2017 Feb; 8(8):14003-14016. PubMed ID: 28122328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is precision medicine ready for use in breast cancer?
    Pusztai L
    Clin Adv Hematol Oncol; 2016 Dec; 14(12):964-966. PubMed ID: 28212357
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of differentially expressed subnetworks based on multivariate ANOVA.
    Hwang T; Park T
    BMC Bioinformatics; 2009 Apr; 10():128. PubMed ID: 19405941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying Risk Pathway Crosstalk Mediated by miRNA to Screen Precision drugs for Breast Cancer Patients.
    Xu Y; Lin S; Zhao H; Wang J; Zhang C; Dong Q; Hu C; Desi S; Wang L; Xu Y
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31466383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.