These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28266498)

  • 21. TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa.
    Xia Y; Wang D; Pan X; Xia B; Weng Y; Long Y; Ren H; Zhou J; Jin Y; Bai F; Cheng Z; Jin S; Wu W
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa.
    Ryan RP; Lucey J; O'Donovan K; McCarthy Y; Yang L; Tolker-Nielsen T; Dow JM
    Environ Microbiol; 2009 May; 11(5):1126-36. PubMed ID: 19170727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection.
    Kukavica-Ibrulj I; Bragonzi A; Paroni M; Winstanley C; Sanschagrin F; O'Toole GA; Levesque RC
    J Bacteriol; 2008 Apr; 190(8):2804-13. PubMed ID: 18083816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa.
    Linares JF; Moreno R; Fajardo A; Martínez-Solano L; Escalante R; Rojo F; Martínez JL
    Environ Microbiol; 2010 Dec; 12(12):3196-212. PubMed ID: 20626455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14.
    Harrison EM; Carter ME; Luck S; Ou HY; He X; Deng Z; O'Callaghan C; Kadioglu A; Rajakumar K
    Infect Immun; 2010 Apr; 78(4):1437-46. PubMed ID: 20123716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target.
    Fenn S; Dubern JF; Cigana C; De Simone M; Lazenby J; Juhas M; Schwager S; Bianconi I; Döring G; Elmsley J; Eberl L; Williams P; Bragonzi A; Cámara M
    mBio; 2021 Apr; 12(2):. PubMed ID: 33879591
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Little AS; Okkotsu Y; Reinhart AA; Damron FH; Barbier M; Barrett B; Oglesby-Sherrouse AG; Goldberg JB; Cody WL; Schurr MJ; Vasil ML; Schurr MJ
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382736
    [No Abstract]   [Full Text] [Related]  

  • 28. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen.
    Crabbé A; Schurr MJ; Monsieurs P; Morici L; Schurr J; Wilson JW; Ott CM; Tsaprailis G; Pierson DL; Stefanyshyn-Piper H; Nickerson CA
    Appl Environ Microbiol; 2011 Feb; 77(4):1221-30. PubMed ID: 21169425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Malonate utilization by Pseudomonas aeruginosa affects quorum-sensing and virulence and leads to formation of mineralized biofilm-like structures.
    Elmassry MM; Bisht K; Colmer-Hamood JA; Wakeman CA; San Francisco MJ; Hamood AN
    Mol Microbiol; 2021 Aug; 116(2):516-537. PubMed ID: 33892520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of the quorum-sensing transcriptional regulators LasR or RhlR does not suppress the expression of virulence factors and the virulence of Pseudomonas aeruginosa PAO1.
    Soto-Aceves MP; Cocotl-Yañez M; Merino E; Castillo-Juárez I; Cortés-López H; González-Pedrajo B; Díaz-Guerrero M; Servín-González L; Soberón-Chávez G
    Microbiology (Reading); 2019 Apr; 165(4):425-432. PubMed ID: 30707095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa.
    Goodman AL; Kulasekara B; Rietsch A; Boyd D; Smith RS; Lory S
    Dev Cell; 2004 Nov; 7(5):745-54. PubMed ID: 15525535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles.
    García-Lara B; Saucedo-Mora MÁ; Roldán-Sánchez JA; Pérez-Eretza B; Ramasamy M; Lee J; Coria-Jimenez R; Tapia M; Varela-Guerrero V; García-Contreras R
    Lett Appl Microbiol; 2015 Sep; 61(3):299-305. PubMed ID: 26084709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes.
    He J; Baldini RL; Déziel E; Saucier M; Zhang Q; Liberati NT; Lee D; Urbach J; Goodman HM; Rahme LG
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2530-5. PubMed ID: 14983043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production.
    Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudomonas aeruginosa PA14 produces R-bodies, extendable protein polymers with roles in host colonization and virulence.
    Wang B; Lin YC; Vasquez-Rifo A; Jo J; Price-Whelan A; McDonald ST; Brown LM; Sieben C; Dietrich LEP
    Nat Commun; 2021 Jul; 12(1):4613. PubMed ID: 34326342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple mung bean infection model for studying the virulence of Pseudomonas aeruginosa.
    Garge S; Azimi S; Diggle SP
    Microbiology (Reading); 2018 May; 164(5):764-768. PubMed ID: 29629857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pseudomonas aeruginosa glutathione biosynthesis genes play multiple roles in stress protection, bacterial virulence and biofilm formation.
    Wongsaroj L; Saninjuk K; Romsang A; Duang-Nkern J; Trinachartvanit W; Vattanaviboon P; Mongkolsuk S
    PLoS One; 2018; 13(10):e0205815. PubMed ID: 30325949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin.
    Hare NJ; Soe CZ; Rose B; Harbour C; Codd R; Manos J; Cordwell SJ
    J Proteome Res; 2012 Feb; 11(2):776-95. PubMed ID: 22054071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ferrichrome receptor A as a new target for Pseudomonas aeruginosa virulence attenuation.
    Lee K; Lee KM; Go J; Ryu JC; Ryu JH; Yoon SS
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A gene network-driven approach to infer novel pathogenicity-associated genes: application to
    De R; Whiteley M; Azad RK
    mSystems; 2023 Dec; 8(6):e0047323. PubMed ID: 37921470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.