These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 28266799)

  • 1. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.
    Pang J; Zheng M; Sun R; Song L; Wang A; Wang X; Zhang T
    Bioresour Technol; 2015 Jan; 175():424-9. PubMed ID: 25459851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
    Yue H; Ma X; Gong J
    Acc Chem Res; 2014 May; 47(5):1483-92. PubMed ID: 24571103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts.
    Ribeiro LS; Órfão JJM; Pereira MFR
    Bioresour Technol; 2018 Sep; 263():402-409. PubMed ID: 29772501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol.
    Zheng MY; Wang AQ; Ji N; Pang JF; Wang XD; Zhang T
    ChemSusChem; 2010; 3(1):63-6. PubMed ID: 19998362
    [No Abstract]   [Full Text] [Related]  

  • 7. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid.
    Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T
    ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over an amino-assisted Ru-based catalyst.
    Song L; He Y; Zhou C; Shu G; Ma K; Yue H
    Chem Commun (Camb); 2022 Oct; 58(83):11657-11660. PubMed ID: 36164825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water.
    Xu L; Huo Z; Fu J; Jin F
    Chem Commun (Camb); 2014 Jun; 50(45):6009-12. PubMed ID: 24769741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.
    Tai Z; Zhang J; Wang A; Zheng M; Zhang T
    Chem Commun (Camb); 2012 Jul; 48(56):7052-4. PubMed ID: 22678506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts.
    Liu Q; Wang H; Xin H; Wang C; Yan L; Wang Y; Zhang Q; Zhang X; Xu Y; Huber GW; Ma L
    ChemSusChem; 2019 Sep; 12(17):3977-3987. PubMed ID: 31225696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerization of nonfood biomass-derived monomers to sustainable polymers.
    Zhang Y; Chen EY
    Top Curr Chem; 2014; 353():185-227. PubMed ID: 24699900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol.
    Zhang Y; Wang A; Zhang T
    Chem Commun (Camb); 2010 Feb; 46(6):862-4. PubMed ID: 20107631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Barley Straw to Valuable Polyols: A Sustainable Process Using Ethanol/Water Mixtures and Hydrogenolysis over Ruthenium-Tungsten Catalyst.
    Fabičovicová K; Lucas M; Claus P
    ChemSusChem; 2016 Oct; 9(19):2804-2815. PubMed ID: 27560287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst.
    Liu Y; Luo C; Liu H
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3249-53. PubMed ID: 22368071
    [No Abstract]   [Full Text] [Related]  

  • 18. An Improved Strategy for the Synthesis of Ethylene Glycol by Oxamate-Mediated Catalytic Hydrogenation.
    Satapathy A; Gadge ST; Bhanage BM
    ChemSusChem; 2017 Apr; 10(7):1356-1359. PubMed ID: 28218500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.
    Matson TD; Barta K; Iretskii AV; Ford PC
    J Am Chem Soc; 2011 Sep; 133(35):14090-7. PubMed ID: 21806029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron Modified Bifunctional Cu/SiO
    Yang D; Ye R; Lin L; Guo R; Zhao P; Yin Y; Cheng W; Yuan W; Yao Y
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.