These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 28266799)

  • 21. Effect of the surface acid sites of tungsten trioxide for highly selective hydrogenation of cellulose to ethylene glycol.
    Li N; Ji Z; Wei L; Zheng Y; Shen Q; Ma Q; Tan M; Zhan M; Zhou J
    Bioresour Technol; 2018 Sep; 264():58-65. PubMed ID: 29787882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate.
    Pereira B; Li ZJ; De Mey M; Lim CG; Zhang H; Hoeltgen C; Stephanopoulos G
    Metab Eng; 2016 Mar; 34():80-87. PubMed ID: 26711083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogenolysis of ethylene glycol to methanol over modified RANEY® catalysts.
    Wu CT; Qu J; Elliott J; Yu KM; Tsang SC
    Phys Chem Chem Phys; 2013 Jun; 15(23):9043-50. PubMed ID: 23661262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pretreatment as the crucial step for a cellulosic ethanol biorefinery: testing the efficiency of wet explosion on different types of biomass.
    Njoku SI; Ahring BK; Uellendahl H
    Bioresour Technol; 2012 Nov; 124():105-10. PubMed ID: 22989639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Cost Ni-W Catalysts Supported on Glucose/Carbon Nanotube Hybrid Carbons for Sustainable Ethylene Glycol Synthesis.
    Morais RG; Ribeiro LS; Órfão JJM; Pereira MFR
    Molecules; 2024 Aug; 29(16):. PubMed ID: 39203040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels.
    Yang W; Sen A
    ChemSusChem; 2010 May; 3(5):597-603. PubMed ID: 20437452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals.
    Angelici C; Weckhuysen BM; Bruijnincx PC
    ChemSusChem; 2013 Sep; 6(9):1595-614. PubMed ID: 23703747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The toxicokinetics of 1,3-butylene glycol versus ethanol in the treatment of ethylene glycol poisoning.
    Cox SK; Ferslew KE; Boelen LJ
    Vet Hum Toxicol; 1992 Feb; 34(1):36-42. PubMed ID: 1621360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molybdenum carbide as an efficient catalyst for low-temperature hydrogenation of dimethyl oxalate.
    Liu Y; Ding J; Sun J; Zhang J; Bi J; Liu K; Kong F; Xiao H; Sun Y; Chen J
    Chem Commun (Camb); 2016 Apr; 52(28):5030-2. PubMed ID: 26983560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of bioethanol from lignocellulose: Status and perspectives in Korea.
    Kim JS; Park SC; Kim JW; Park JC; Park SM; Lee JS
    Bioresour Technol; 2010 Jul; 101(13):4801-5. PubMed ID: 20061145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.
    Brethauer S; Wyman CE
    Bioresour Technol; 2010 Jul; 101(13):4862-74. PubMed ID: 20006926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.
    Tan IS; Lee KT
    Carbohydr Polym; 2015 Jun; 124():311-21. PubMed ID: 25839825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts.
    Yang L; Yan X; Wang Q; Wang Q; Xia H
    Carbohydr Res; 2015 Mar; 404():87-92. PubMed ID: 25665784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deoxydehydration of polyols.
    Boucher-Jacobs C; Nicholas KM
    Top Curr Chem; 2014; 353():163-84. PubMed ID: 24756633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals.
    Jin X; Fang T; Wang J; Liu M; Pan S; Subramaniam B; Shen J; Yang C; Chaudhari RV
    Chem Rec; 2019 Sep; 19(9):1952-1994. PubMed ID: 30474917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. sunliquid(®): Sustainable and competitive cellulosic ethanol from agricultural residues.
    Rarbach M; Söltl Y
    Chimia (Aarau); 2013; 67(10):732-4. PubMed ID: 24388140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.
    Silveira MH; Morais AR; da Costa Lopes AM; Olekszyszen DN; Bogel-Łukasik R; Andreaus J; Pereira Ramos L
    ChemSusChem; 2015 Oct; 8(20):3366-90. PubMed ID: 26365899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ru/C-Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae - Influence of pH and Biologically Relevant Additives.
    Harth FM; Celis J; Taubert A; Rössler S; Wagner H; Goepel M; Wilhelm C; Gläser R
    ChemistryOpen; 2022 Jul; 11(7):e202200050. PubMed ID: 35822926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.