These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28266835)

  • 21. Refractory Plasmonic Hafnium Nitride and Zirconium Nitride Thin Films as Alternatives to Silver for Solar Mirror Applications.
    Das P; Biswas B; Maurya KC; Garbrecht M; Saha B
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46708-46715. PubMed ID: 36195562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ammonothermal Synthesis of Nitrides: Recent Developments and Future Perspectives.
    Häusler J; Schnick W
    Chemistry; 2018 Aug; 24(46):11864-11879. PubMed ID: 29476648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of high Q-factor metallic nanocavities using plasmonic bandgaps.
    Ee HS; Park HG; Kim SK
    Appl Opt; 2016 Feb; 55(5):1029-33. PubMed ID: 26906371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between electrical direct current resistivity and plasmonic properties of CMOS compatible titanium nitride thin films.
    Viarbitskaya S; Arocas J; Heintz O; Colas-Des-Francs G; Rusakov D; Koch U; Leuthold J; Markey L; Dereux A; Weeber JC
    Opt Express; 2018 Apr; 26(8):9813-9821. PubMed ID: 29715927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra hybrid plasmonics: strong coupling of plexcitons with plasmon polaritons.
    Balci S; Kocabas C
    Opt Lett; 2015 Jul; 40(14):3424-7. PubMed ID: 26176485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity.
    Stefaniuk T; Wróbel P; Trautman P; Szoplik T
    Appl Opt; 2014 Apr; 53(10):B237-41. PubMed ID: 24787210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly conductive films of layered ternary transition-metal nitrides.
    Luo H; Wang H; Bi Z; Zou G; McCleskey TM; Burrell AK; Bauer E; Hawley ME; Wang Y; Jia Q
    Angew Chem Int Ed Engl; 2009; 48(8):1490-3. PubMed ID: 19145621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A map of the inorganic ternary metal nitrides.
    Sun W; Bartel CJ; Arca E; Bauers SR; Matthews B; Orvañanos B; Chen BR; Toney MF; Schelhas LT; Tumas W; Tate J; Zakutayev A; Lany S; Holder AM; Ceder G
    Nat Mater; 2019 Jul; 18(7):732-739. PubMed ID: 31209391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bulk phase behavior of lithium imide-metal nitride ammonia decomposition catalysts.
    Makepeace JW; Wood TJ; Marks PL; Smith RI; Murray CA; David WIF
    Phys Chem Chem Phys; 2018 Sep; 20(35):22689-22697. PubMed ID: 30137070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magneto-Ionics in Single-Layer Transition Metal Nitrides.
    de Rojas J; Salguero J; Ibrahim F; Chshiev M; Quintana A; Lopeandia A; Liedke MO; Butterling M; Hirschmann E; Wagner A; Abad L; Costa-Krämer JL; Menéndez E; Sort J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30826-30834. PubMed ID: 34156228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study on structural and mechanical properties of Si-containing ternary transition metal nitrides M
    Chen L; Xie Q; Jia Y; Yao Y
    RSC Adv; 2023 Mar; 13(13):9109-9118. PubMed ID: 36950075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bulk and surface plasmon polariton excitation in RuO₂ for low-loss plasmonic applications in NIR.
    Wang L; Clavero C; Yang K; Radue E; Simons MT; Novikova I; Lukaszew RA
    Opt Express; 2012 Apr; 20(8):8618-28. PubMed ID: 22513571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index.
    Yue Z; Cai B; Wang L; Wang X; Gu M
    Sci Adv; 2016 Mar; 2(3):e1501536. PubMed ID: 27051869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths.
    Weeber JC; Arocas J; Heintz O; Markey L; Viarbitskaya S; Colas-des-Francs G; Hammani K; Dereux A; Hoessbacher C; Koch U; Leuthold J; Rohracher K; Giesecke AL; Porschatis C; Wahlbrink T; Chmielak B; Pleros N; Tsiokos D
    Opt Express; 2017 Jan; 25(1):394-408. PubMed ID: 28085833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement.
    Bian Y; Zheng Z; Liu Y; Liu J; Zhu J; Zhou T
    Opt Express; 2011 Nov; 19(23):22417-22. PubMed ID: 22109118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Piezoelectric Effects in Surface-Engineered Two-Dimensional Group III Nitrides.
    Guo Y; Zhu H; Wang Q
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1033-1039. PubMed ID: 30547577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New materials for tunable plasmonic colloidal nanocrystals.
    Comin A; Manna L
    Chem Soc Rev; 2014 Jun; 43(11):3957-75. PubMed ID: 24435209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible but Refractory Single-Crystalline Hyperbolic Metamaterials.
    Zhang R; Lin T; Peng S; Bi J; Zhang S; Su G; Sun J; Gao J; Cao H; Zhang Q; Gu L; Cao Y
    Nano Lett; 2023 May; 23(9):3879-3886. PubMed ID: 37115190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.