These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28266860)

  • 1. Reduced Lateral Confinement and Its Effect on Stability in Patterned Strong Polyelectrolyte Brushes.
    Chen WL; Menzel M; Watanabe T; Prucker O; Rühe J; Ober CK
    Langmuir; 2017 Apr; 33(13):3296-3303. PubMed ID: 28266860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes.
    Kesal D; Christau S; Krause P; Möller T; Von Klitzing R
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective adsorption of functionalized nanoparticles to patterned polymer brush surfaces and its probing with an optical trap.
    Steinbach A; Paust T; Pluntke M; Marti O; Volkmer D
    Chemphyschem; 2013 Oct; 14(15):3523-31. PubMed ID: 24105927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers.
    Wang L; Wei P; Stumpf S; Schubert US; Hoeppener S
    Nanotechnology; 2020 Nov; 31(46):465604. PubMed ID: 32841206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties.
    Politakos N; Azinas S; Moya SE
    Macromol Rapid Commun; 2016 Apr; 37(7):662-7. PubMed ID: 26872001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a directly patterned low-surface-energy polymer brush in supercritical carbon dioxide.
    Rastogi A; Paik MY; Ober CK
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2013-20. PubMed ID: 20355827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of brush thickness and solvent composition on the friction force response of poly(2-(methacryloyloxy)ethylphosphorylcholine) brushes.
    Zhang Z; Morse AJ; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2011 Mar; 27(6):2514-21. PubMed ID: 21319847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial control over cross-linking dictates the pH-responsive behavior of poly(2-(tert-butylamino)ethyl methacrylate) brushes.
    Alswieleh AM; Cheng N; Leggett GJ; Armes SP
    Langmuir; 2014 Feb; 30(5):1391-400. PubMed ID: 24417283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning of polymer brushes. A direct approach to complex, sub-surface structures.
    Paik MY; Xu Y; Rastogi A; Tanaka M; Yi Y; Ober CK
    Nano Lett; 2010 Oct; 10(10):3873-9. PubMed ID: 20815408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swelling-Induced Chain Stretching Enhances Hydrolytic Degrafting of Hydrophobic Polymer Brushes in Organic Media.
    Wang J; Klok HA
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9989-9993. PubMed ID: 31116495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures.
    Edmondson S; Nguyen NT; Lewis AL; Armes SP
    Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotribological Investigation of Polymer Brushes with Lithographically Defined and Systematically Varying Grafting Densities.
    Zhang ZJ; Moxey M; Alswieleh A; Armes SP; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2017 Jan; 33(3):706-713. PubMed ID: 28042924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned poly(N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization.
    Tu H; Heitzman CE; Braun PV
    Langmuir; 2004 Sep; 20(19):8313-20. PubMed ID: 15350108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate.
    Li Y; Lin Y; Dai Y; Ko Y; Genzer J
    Langmuir; 2019 Oct; 35(42):13693-13699. PubMed ID: 31565947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-demand degrafting and the study of molecular weight and grafting density of poly(methyl methacrylate) brushes on flat silica substrates.
    Patil RR; Turgman-Cohen S; Šrogl J; Kiserow D; Genzer J
    Langmuir; 2015 Mar; 31(8):2372-81. PubMed ID: 25654273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling enhancement of polyelectrolyte brushes induced by external ions.
    Chu X; Yang J; Liu G; Zhao J
    Soft Matter; 2014 Aug; 10(30):5568-78. PubMed ID: 24960144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionally decoupled soft lithography for patterning polymer brushes.
    Moran IW; Ell JR; Carter KR
    Small; 2011 Sep; 7(18):2669-74. PubMed ID: 21818847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.