BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 2826702)

  • 21. Distinct regulations by calcium of cyclic GMP levels and catecholamine secretion in isolated bovine adrenal chromaffin cells.
    Lemaire S; Derome G; Tseng R; Mercier P; Lemaire I
    Metabolism; 1981 May; 30(5):462-8. PubMed ID: 6262600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of [Na+]i and [Ca2+]i in nicotine-induced norepinephrine release from bovine adrenal chromaffin cells.
    Gerber SH; Haunstetter A; Krüger C; Kaufmann A; Nobiling R; Haass M
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C572-81. PubMed ID: 7573386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alpha 2-adrenoceptor-mediated inhibition of electrically evoked [3H]noradrenaline release from chick sympathetic neurons: role of cyclic AMP.
    Boehm S; Huck S; Koth G; Drobny H; Agneter E; Singer EA
    J Neurochem; 1994 Jul; 63(1):146-54. PubMed ID: 7515943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of cyclic AMP levels by calcium in bovine adrenal medullary cells.
    Keogh R; Marley PD
    J Neurochem; 1991 Nov; 57(5):1721-8. PubMed ID: 1717656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.
    Owen PJ; Marriott DB; Boarder MR
    Br J Pharmacol; 1989 May; 97(1):133-8. PubMed ID: 2470457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A reassessment of the modulatory role of cyclic AMP in catecholamine secretion by chromaffin cells.
    Parramón M; González MP; Oset-Gasque MJ
    Br J Pharmacol; 1995 Jan; 114(2):517-23. PubMed ID: 7881750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examination of the role of inhibition of cyclic AMP in alpha 2-adrenoceptor mediated contractions of the porcine isolated palmar lateral vein.
    Wright IK; Harling R; Kendall DA; Wilson VG
    Br J Pharmacol; 1995 Jan; 114(1):157-65. PubMed ID: 7712012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of nicotinic acetylcholine receptor channels in bovine adrenal chromaffin cells by Y3-type neuropeptide Y receptors via the adenylate cyclase/protein kinase A system.
    Nörenberg W; Bek M; Limberger N; Takeda K; Illes P
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Apr; 351(4):337-47. PubMed ID: 7543184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinoceptor regulation of cyclic AMP levels in bovine adrenal medullary cells.
    Anderson K; Robinson PJ; Marley PD
    Br J Pharmacol; 1992 Jun; 106(2):360-6. PubMed ID: 1382780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct and continuous detection of ATP secretion from primary monolayer cultures of bovine adrenal chromaffin cells.
    White TD; Bourke JE; Livett BG
    J Neurochem; 1987 Oct; 49(4):1266-73. PubMed ID: 3114430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vasoactive intestinal peptide elevates cyclic AMP levels and potentiates secretion in bovine adrenal chromaffin cells.
    Wilson SP
    Neuropeptides; 1988 Jan; 11(1):17-21. PubMed ID: 2835702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of forskolin and analogues on nicotinic receptor-mediated sodium flux, voltage-dependent calcium flux, and voltage-dependent rubidium efflux in pheochromocytoma PC12 cells.
    Nishizawa Y; Seamon KB; Daly JW; Aronstam RS
    Cell Mol Neurobiol; 1990 Sep; 10(3):351-68. PubMed ID: 1701359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromodulator-mediated phosphorylation of specific proteins in a neurotumor hybrid cell line (NCB-20).
    Berry-Kravis E; Kazmierczak BI; Derechin V; Dawson G
    J Neurochem; 1988 Apr; 50(4):1287-96. PubMed ID: 2450174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitory effects of ionophore A23187 on the release of thyroid hormone and colloid reabsorption in mouse thyroid glands.
    Mori-Tanaka M; Tajima K; Miyagawa J; Oda Y; Matsui I; Kitajima K; Hanafusa T; Tarui S; Mashita K
    Acta Endocrinol (Copenh); 1991 Apr; 124(4):463-9. PubMed ID: 1709547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E1 in rat skin.
    Sugio K; Daly JW
    Life Sci; 1984 Jan; 34(2):123-32. PubMed ID: 6319936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forskolin stimulates prostaglandin synthesis in rabbit heart by a mechanism that requires calcium and is independent of cyclic AMP.
    Williams JL; Malik KU
    Circ Res; 1990 Nov; 67(5):1247-56. PubMed ID: 2171806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of cyclic AMP in hydrogen peroxide-induced potentiation of sympathetic neurotransmission in the bovine iris.
    Opere CA; Ohia SE
    J Ocul Pharmacol Ther; 1997 Jun; 13(3):261-8. PubMed ID: 9185042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences between the mechanisms of adrenaline and noradrenaline secretion from isolated, bovine, adrenal chromaffin cells.
    Marley PD; Livett BG
    Neurosci Lett; 1987 Jun; 77(1):81-6. PubMed ID: 3601219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3H-noradrenaline release from rat neocortical slices in the absence of extracellular Ca2+ and its presynaptic alpha 2-adrenergic modulation. A study on the possible role of cyclic AMP.
    Schoffelmeer AN; Mulder AH
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Jul; 323(3):188-92. PubMed ID: 6312334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K; Pedone C; Brooker G
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.