These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28267168)

  • 1. Impedance spectroscopy-based cell/particle position detection in microfluidic systems.
    Wang H; Sobahi N; Han A
    Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting particles flowing through interdigitated 3D microelectrodes.
    Bianchi E; Rollo E; Kilchenmann S; Bellati FM; Accastelli E; Guiducci C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5002-5. PubMed ID: 23367051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple electrical approach to monitor dielectrophoretic focusing of particles flowing in a microchannel.
    Reale R; De Ninno A; Businaro L; Bisegna P; Caselli F
    Electrophoresis; 2019 May; 40(10):1400-1407. PubMed ID: 30661234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes.
    Sobahi N; Han A
    Biosens Bioelectron; 2020 Oct; 166():112458. PubMed ID: 32777724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring time course of human whole blood coagulation using a microfluidic dielectric sensor with a 3D capacitive structure.
    Maji D; Suster MA; Stavrou E; Gurkan UA; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5904-7. PubMed ID: 26737635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcapillary-assisted dielectrophoresis for single-particle positioning.
    Luo Y; Cao X; Huang P; Yobas L
    Lab Chip; 2012 Oct; 12(20):4085-92. PubMed ID: 22892643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors.
    Narakathu BB; Atashbar MZ; Bejcek BE
    Biosens Bioelectron; 2010 Oct; 26(2):923-8. PubMed ID: 20655726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform.
    Nwankire CE; Venkatanarayanan A; Glennon T; Keyes TE; Forster RJ; Ducrée J
    Biosens Bioelectron; 2015 Jun; 68():382-389. PubMed ID: 25613813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of impedance measurements of whole cells.
    Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J
    Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric spectroscopy of red blood cells in sickle cell disease.
    Liu J; Qiang Y; Du E
    Electrophoresis; 2021 Mar; 42(5):667-675. PubMed ID: 33314275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband spectroscopy of dynamic impedances with short chirp pulses.
    Min M; Land R; Paavle T; Parve T; Annus P; Trebbels D
    Physiol Meas; 2011 Jul; 32(7):945-58. PubMed ID: 21646703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads.
    Lin YH; Wang SH; Wu MH; Pan TM; Lai CS; Luo JD; Chiou CC
    Biosens Bioelectron; 2013 May; 43():328-35. PubMed ID: 23356998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.