These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28267202)

  • 21. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.
    Tõugu V; Karafin A; Zovo K; Chung RS; Howells C; West AK; Palumaa P
    J Neurochem; 2009 Sep; 110(6):1784-95. PubMed ID: 19619132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational backbone mutagenesis of Abeta peptides: probing the role of backbone hydrogen bonds in aggregation.
    Takeda T; Klimov DK
    J Phys Chem B; 2010 Apr; 114(14):4755-62. PubMed ID: 20302321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural dynamics of the ΔE22 (Osaka) familial Alzheimer's disease-linked amyloid β-protein.
    Inayathullah M; Teplow DB
    Amyloid; 2011 Sep; 18(3):98-107. PubMed ID: 21668291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of Aβ (1-42) peptide fibrils as consequence of environmental modifications.
    Gregori M; Cassina V; Brogioli D; Salerno D; De Kimpe L; Scheper W; Masserini M; Mantegazza F
    Eur Biophys J; 2010 Nov; 39(12):1613-23. PubMed ID: 20694815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH Dependence of Amyloid-β Fibril Assembly Kinetics: Unravelling the Microscopic Molecular Processes.
    Tian Y; Viles JH
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202210675. PubMed ID: 36197009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The N-terminal region of amyloid β controls the aggregation rate and fibril stability at low pH through a gain of function mechanism.
    Brännström K; Öhman A; Nilsson L; Pihl M; Sandblad L; Olofsson A
    J Am Chem Soc; 2014 Aug; 136(31):10956-64. PubMed ID: 25014209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amyloid beta oligomers: how pH influences over trimer and pentamer structures?
    Paredes-Rosan CA; Valencia DE; Barazorda-Ccahuana HL; Aguilar-Pineda JA; Gómez B
    J Mol Model; 2019 Dec; 26(1):1. PubMed ID: 31834477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling.
    Gu L; Tran J; Jiang L; Guo Z
    J Struct Biol; 2016 Apr; 194(1):61-7. PubMed ID: 26827680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Aβ42 variant that inhibits intra- and extracellular amyloid aggregation and enhances cell viability.
    Oren O; Banerjee V; Taube R; Papo N
    Biochem J; 2018 Oct; 475(19):3087-3103. PubMed ID: 30213841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aβ
    Anand BG; Prajapati KP; Kar K
    Biochem Biophys Res Commun; 2018 Jun; 501(1):158-164. PubMed ID: 29723530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the interactions of copper and zinc ions with β-amyloid peptides by a surface plasmon resonance biosensor.
    Yao F; Zhang R; Tian H; Li X
    Int J Mol Sci; 2012; 13(9):11832-11843. PubMed ID: 23109885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the zinc binding site of the amyloid-beta peptide.
    Yang DS; McLaurin J; Qin K; Westaway D; Fraser PE
    Eur J Biochem; 2000 Nov; 267(22):6692-8. PubMed ID: 11054124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen bonding involving side chain exchangeable groups stabilizes amyloid quarternary structure.
    Agarwal V; Linser R; Dasari M; Fink U; del Amo JM; Reif B
    Phys Chem Chem Phys; 2013 Aug; 15(30):12551-7. PubMed ID: 23719770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Curcumin Dictates Divergent Fates for the Central Salt Bridges in Amyloid-β
    Chandra B; Mithu VS; Bhowmik D; Das AK; Sahoo B; Maiti S; Madhu PK
    Biophys J; 2017 Apr; 112(8):1597-1608. PubMed ID: 28445751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effects of N-terminal Mutations on β-amyloid Peptide Aggregation and Toxicity.
    Foroutanpay BV; Kumar J; Kang SG; Danaei N; Westaway D; Sim VL; Kar S
    Neuroscience; 2018 May; 379():177-188. PubMed ID: 29572166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histidine residues underlie Congo red binding to A beta analogs.
    Inouye H; Nguyen JT; Fraser PE; Shinchuk LM; Packard AB; Kirschner DA
    Amyloid; 2000 Sep; 7(3):179-88. PubMed ID: 11019858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The elevated copper binding strength of amyloid-β aggregates allows the sequestration of copper from albumin: a pathway to accumulation of copper in senile plaques.
    Jiang D; Zhang L; Grant GP; Dudzik CG; Chen S; Patel S; Hao Y; Millhauser GL; Zhou F
    Biochemistry; 2013 Jan; 52(3):547-56. PubMed ID: 23237523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Mechanism of Amyloid Fibril Formation.
    Galzitskaya O
    Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissociation of a BRICHOS trimer into monomers leads to increased inhibitory effect on Aβ42 fibril formation.
    Biverstål H; Dolfe L; Hermansson E; Leppert A; Reifenrath M; Winblad B; Presto J; Johansson J
    Biochim Biophys Acta; 2015 Aug; 1854(8):835-43. PubMed ID: 25891900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of Size of Folding Nuclei of Fibrils Formed from Recombinant Aβ(1-40) Peptide.
    Grigorashvili EI; Selivanova OM; Dovidchenko NV; Dzhus UF; Mikhailina AO; Suvorina MY; Marchenkov VV; Surin AK; Galzitskaya OV
    Biochemistry (Mosc); 2016 May; 81(5):538-47. PubMed ID: 27297904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.