These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28267277)

  • 1. Generating Multicompartmental 3D Biological Constructs Interfaced through Sequential Injections in Microfluidic Devices.
    Ugolini GS; Visone R; Redaelli A; Moretti M; Rasponi M
    Adv Healthc Mater; 2017 May; 6(10):. PubMed ID: 28267277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication.
    Cao UMN; Zhang Y; Chen J; Sayson D; Pillai S; Tran SD
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D nanomolding for lab-on-a-chip applications.
    Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S
    Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The upcoming 3D-printing revolution in microfluidics.
    Bhattacharjee N; Urrios A; Kang S; Folch A
    Lab Chip; 2016 May; 16(10):1720-42. PubMed ID: 27101171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolds for 3D in vitro culture of neural lineage cells.
    Murphy AR; Laslett A; O'Brien CM; Cameron NR
    Acta Biomater; 2017 May; 54():1-20. PubMed ID: 28259835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications.
    Sticker D; Rothbauer M; Lechner S; Hehenberger MT; Ertl P
    Lab Chip; 2015 Dec; 15(24):4542-54. PubMed ID: 26524977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing.
    Villata S; Canta M; Baruffaldi D; Pavan A; Chiappone A; Pirri CF; Frascella F; Roppolo I
    Biomater Sci; 2023 Apr; 11(8):2950-2959. PubMed ID: 36912680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viable cell culture in PDMS-based microfluidic devices.
    Tanyeri M; Tay S
    Methods Cell Biol; 2018; 148():3-33. PubMed ID: 30473072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.