BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28267379)

  • 1. An injectable, biodegradable calcium phosphate cement containing poly lactic-co-glycolic acid as a bone substitute in ex vivo human vertebral compression fracture and rabbit bone defect models.
    Duan X; Liao HX; Zou HZ; Zhang ZJ; Ye JD; Liao WM
    Connect Tissue Res; 2018 Jan; 59(1):55-65. PubMed ID: 28267379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In vivo degradable properties of a novel injectable calcium phosphate cement containing poly lactic-co-glycolic acid].
    Liao H; Duan X; Zhang Z; Zou H; Ye J; Liao W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Aug; 26(8):934-8. PubMed ID: 23012926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Radio-Opaque and Macroporous Injectable Calcium Phosphate Cement.
    Belaid H; Barou C; Collart-Dutilleul PY; Desoutter A; Kajdan M; Bernex F; Tétreau R; Cuisinier F; Barés J; Huon V; Teyssier C; Cornu D; Cavaillès V; Bechelany M
    ACS Appl Bio Mater; 2022 Jun; 5(6):3075-3085. PubMed ID: 35584545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic-co-glycolic acid) Network and Bioactive Wollastonite.
    Qian G; Fan P; He F; Ye J
    Adv Healthc Mater; 2019 May; 8(9):e1801325. PubMed ID: 30901163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study.
    Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement.
    Maenz S; Brinkmann O; Kunisch E; Horbert V; Gunnella F; Bischoff S; Schubert H; Sachse A; Xin L; Günster J; Illerhaus B; Jandt KD; Bossert J; Kinne RW; Bungartz M
    Spine J; 2017 May; 17(5):709-719. PubMed ID: 27871820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration.
    Liang W; Gao M; Lou J; Bai Y; Zhang J; Lu T; Sun X; Ye J; Li B; Sun L; Heng BC; Zhang X; Deng X
    J Mater Chem B; 2020 Apr; 8(15):3038-3049. PubMed ID: 32196049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow-an ex vivo and in vivo study in sheep vertebrae.
    Xin L; Bungartz M; Maenz S; Horbert V; Hennig M; Illerhaus B; Günster J; Bossert J; Bischoff S; Borowski J; Schubert H; Jandt KD; Kunisch E; Kinne RW; Brinkmann O
    Spine J; 2016 Dec; 16(12):1468-1477. PubMed ID: 27496285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GDF5 mutant BB-1 enhances the bone formation induced by an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia.
    Gunnella F; Kunisch E; Maenz S; Horbert V; Xin L; Mika J; Borowski J; Bischoff S; Schubert H; Sachse A; Illerhaus B; Günster J; Bossert J; Jandt KD; Plöger F; Kinne RW; Brinkmann O; Bungartz M
    Spine J; 2018 Feb; 18(2):357-369. PubMed ID: 29031993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biomechanical study on a novel injectable calcium phosphate cement containing poly (latic-co-glycolic acid) in repairing tibial plateau fractures].
    Zou H; Ma X; Tang C; Li C; Chen J; Ye J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):855-9. PubMed ID: 24063177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term variations in mechanical properties and in vivo degradability of CPC/PLGA composite.
    Dagang G; Haoliang S; Kewei X; Yong H
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):533-44. PubMed ID: 17318820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration.
    Smith BT; Lu A; Watson E; Santoro M; Melchiorri AJ; Grosfeld EC; van den Beucken JJJP; Jansen JA; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2018 Sep; 78():341-350. PubMed ID: 30075321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures.
    Sun G; Wei D; Liu X; Chen Y; Li M; He D; Zhong J
    Nanomedicine; 2013 Aug; 9(6):829-38. PubMed ID: 23318398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles.
    Félix Lanao RP; Leeuwenburgh SC; Wolke JG; Jansen JA
    Biomaterials; 2011 Dec; 32(34):8839-47. PubMed ID: 21871661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment.
    He F; Li J; Ye J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maxillary sinus floor augmentation with injectable calcium phosphate cements: a pre-clinical study in sheep.
    Hoekstra JW; Klijn RJ; Meijer GJ; van den Beucken JJ; Jansen JA
    Clin Oral Implants Res; 2013 Feb; 24(2):210-6. PubMed ID: 22335192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect.
    Liao H; Walboomers XF; Habraken WJ; Zhang Z; Li Y; Grijpma DW; Mikos AG; Wolke JG; Jansen JA
    Acta Biomater; 2011 Apr; 7(4):1752-9. PubMed ID: 21185953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GDF5 significantly augments the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia.
    Bungartz M; Kunisch E; Maenz S; Horbert V; Xin L; Gunnella F; Mika J; Borowski J; Bischoff S; Schubert H; Sachse A; Illerhaus B; Günster J; Bossert J; Jandt KD; Plöger F; Kinne RW; Brinkmann O
    Spine J; 2017 Nov; 17(11):1685-1698. PubMed ID: 28642196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.