These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28267498)

  • 21. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study.
    Kumagai A; Lee SH; Endo T
    Biomacromolecules; 2013 Jul; 14(7):2420-6. PubMed ID: 23721319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.
    Vallejos ME; Felissia FE; Area MC; Ehman NV; Tarrés Q; Mutjé P
    Carbohydr Polym; 2016 Mar; 139():99-105. PubMed ID: 26794952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignin containing cellulose nanofibers (LCNFs): Lignin content-morphology-rheology relationships.
    Yuan T; Zeng J; Wang B; Cheng Z; Chen K
    Carbohydr Polym; 2021 Feb; 254():117441. PubMed ID: 33357912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials.
    Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H
    Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of TEMPO-mediated oxidation on the lignin of thermomechanical pulp.
    Ma P; Fu S; Zhai H; Law K; Daneault C
    Bioresour Technol; 2012 Aug; 118():607-10. PubMed ID: 22704831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements.
    Ververis C; Georghiou K; Danielidis D; Hatzinikolaou DG; Santas P; Santas R; Corleti V
    Bioresour Technol; 2007 Jan; 98(2):296-301. PubMed ID: 16524722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid determination of lignin content of straw using fourier transform mid-infrared spectroscopy.
    Tamaki Y; Mazza G
    J Agric Food Chem; 2011 Jan; 59(2):504-12. PubMed ID: 21175187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement.
    Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C
    Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water.
    Pronyk C; Mazza G
    Bioresour Technol; 2011 Jan; 102(2):2016-25. PubMed ID: 20933393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring fibrillation in the mechanical production of lignocellulosic micro/nanofibers from bleached spruce thermomechanical pulp.
    Serra-Parareda F; Tarrés Q; Pèlach MÀ; Mutjé P; Balea A; Monte MC; Negro C; Delgado-Aguilar M
    Int J Biol Macromol; 2021 May; 178():354-362. PubMed ID: 33652049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils.
    Tanguy NR; Khorsand Kazemi K; Hong J; Cheung KC; Mohammadi S; Gnanasekar P; Nair SS; Zarifi MH; Yan N
    Carbohydr Polym; 2022 Feb; 278():118920. PubMed ID: 34973739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites.
    Wang X; Xia Q; Jing S; Li C; Chen Q; Chen B; Pang Z; Jiang B; Gan W; Chen G; Cui M; Hu L; Li T
    Small; 2021 May; 17(18):e2008011. PubMed ID: 33759326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient centrifugal spinning of soda lignin for the production of activated carbon nanofibers with highly porous structure.
    Pan W; Lin J
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1433-1442. PubMed ID: 36195226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced polysaccharide nanofibers
    Ciriminna R; Scurria A; Pagliaro M
    Chem Commun (Camb); 2021 Aug; 57(64):7863-7868. PubMed ID: 34287441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid.
    Bian H; Chen L; Dai H; Zhu JY
    Carbohydr Polym; 2017 Jul; 167():167-176. PubMed ID: 28433151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignin-based carbon nanofibe rs: Morphologies, properties, and features as substrates for pseudocapacitor electrodes.
    Hu P; Jin H; Wang K; Zhao Z; Qu W
    Int J Biol Macromol; 2021 Dec; 193(Pt A):519-527. PubMed ID: 34695494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale.
    Lambert E; Aguié-Béghin V; Dessaint D; Foulon L; Chabbert B; Paës G; Molinari M
    Biomacromolecules; 2019 Jan; 20(1):515-527. PubMed ID: 30532964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption.
    Bian H; Duan S; Wu J; Fu Y; Yang W; Yao S; Zhang Z; Xiao H; Dai H; Hu C
    Carbohydr Polym; 2022 Feb; 278():119011. PubMed ID: 34973804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.