These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28267498)
41. Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale. Lambert E; Aguié-Béghin V; Dessaint D; Foulon L; Chabbert B; Paës G; Molinari M Biomacromolecules; 2019 Jan; 20(1):515-527. PubMed ID: 30532964 [TBL] [Abstract][Full Text] [Related]
42. Lignocellulosic nanofibril aerogel via gas phase coagulation and diisocyanate modification for solvent absorption. Bian H; Duan S; Wu J; Fu Y; Yang W; Yao S; Zhang Z; Xiao H; Dai H; Hu C Carbohydr Polym; 2022 Feb; 278():119011. PubMed ID: 34973804 [TBL] [Abstract][Full Text] [Related]
43. Structural changes of hemicellulose during pulping process and its interaction with nanocellulose. Lan X; Fu S; Song J; Leu S; Shen J; Kong Y; Kang S; Yuan X; Liu H Int J Biol Macromol; 2024 Jan; 255():127772. PubMed ID: 37913887 [TBL] [Abstract][Full Text] [Related]
44. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment. Ahuja D; Kaushik A; Singh M Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841 [TBL] [Abstract][Full Text] [Related]
45. Extraction and characterization of original lignin and hemicelluloses from wheat straw. Sun XF; Sun R; Fowler P; Baird MS J Agric Food Chem; 2005 Feb; 53(4):860-70. PubMed ID: 15712990 [TBL] [Abstract][Full Text] [Related]
46. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Cagnon B; Py X; Guillot A; Stoeckli F; Chambat G Bioresour Technol; 2009 Jan; 100(1):292-8. PubMed ID: 18650083 [TBL] [Abstract][Full Text] [Related]
47. Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. Bang J; Kim JH; Park SW; Kim J; Jung M; Jung S; Kim JC; Choi IG; Kwak HW Int J Biol Macromol; 2023 Jun; 240():124330. PubMed ID: 37023881 [TBL] [Abstract][Full Text] [Related]
48. Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes. Choong FX; Bäck M; Steiner SE; Melican K; Nilsson KP; Edlund U; Richter-Dahlfors A Sci Rep; 2016 Oct; 6():35578. PubMed ID: 27759105 [TBL] [Abstract][Full Text] [Related]
49. The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process. Shi J; Yang Q; Lin L Carbohydr Polym; 2014 Apr; 104():182-90. PubMed ID: 24607176 [TBL] [Abstract][Full Text] [Related]
50. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925 [TBL] [Abstract][Full Text] [Related]
51. Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions. Yuan TQ; Xu F; He J; Sun RC Biotechnol Adv; 2010; 28(5):583-93. PubMed ID: 20493941 [TBL] [Abstract][Full Text] [Related]
53. Fractional purification and bioconversion of hemicelluloses. Peng F; Peng P; Xu F; Sun RC Biotechnol Adv; 2012; 30(4):879-903. PubMed ID: 22306329 [TBL] [Abstract][Full Text] [Related]
54. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR. Habets S; de Wild PJ; Huijgen WJJ; van Eck ERH Bioresour Technol; 2013 Oct; 146():585-590. PubMed ID: 23973979 [TBL] [Abstract][Full Text] [Related]
55. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Ago M; Okajima K; Jakes JE; Park S; Rojas OJ Biomacromolecules; 2012 Mar; 13(3):918-26. PubMed ID: 22283444 [TBL] [Abstract][Full Text] [Related]
56. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699 [TBL] [Abstract][Full Text] [Related]
57. Why genetic modification of lignin leads to low-recalcitrance biomass. Carmona C; Langan P; Smith JC; Petridis L Phys Chem Chem Phys; 2015 Jan; 17(1):358-64. PubMed ID: 25384960 [TBL] [Abstract][Full Text] [Related]
58. The effect of non-structural components and lignin on hemicellulose extraction. Liu KX; Li HQ; Zhang J; Zhang ZG; Xu J Bioresour Technol; 2016 Aug; 214():755-760. PubMed ID: 27213576 [TBL] [Abstract][Full Text] [Related]
59. Developing lignin-based bio-nanofibers by centrifugal spinning technique. Stojanovska E; Kurtulus M; Abdelgawad A; Candan Z; Kilic A Int J Biol Macromol; 2018 Jul; 113():98-105. PubMed ID: 29438751 [TBL] [Abstract][Full Text] [Related]
60. Cellulose Nanofibers from a Dutch Elm Disease-Resistant Jiménez-López L; Eugenio ME; Ibarra D; Darder M; Martín JA; Martín-Sampedro R Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33113940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]