These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28267569)

  • 21. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development.
    Lv Y; Liu Y; Zhao H
    BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microindel detection in short-read sequence data.
    Krawitz P; Rödelsperger C; Jäger M; Jostins L; Bauer S; Robinson PN
    Bioinformatics; 2010 Mar; 26(6):722-9. PubMed ID: 20144947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SInC: an accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data.
    Pattnaik S; Gupta S; Rao AA; Panda B
    BMC Bioinformatics; 2014 Feb; 15():40. PubMed ID: 24495296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving indel detection specificity of the Ion Torrent PGM benchtop sequencer.
    Yeo ZX; Chan M; Yap YS; Ang P; Rozen S; Lee AS
    PLoS One; 2012; 7(9):e45798. PubMed ID: 23029247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes.
    Yeo ZX; Wong JC; Rozen SG; Lee AS
    BMC Genomics; 2014 Jun; 15(1):516. PubMed ID: 24962530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms.
    Bartenhagen C; Dugas M
    Brief Bioinform; 2016 Jan; 17(1):51-62. PubMed ID: 25998133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tool evaluation for the detection of variably sized indels from next generation whole genome and targeted sequencing data.
    Wang N; Lysenkov V; Orte K; Kairisto V; Aakko J; Khan S; Elo LL
    PLoS Comput Biol; 2022 Feb; 18(2):e1009269. PubMed ID: 35176018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data.
    Liu J; Qu J; Yang C; Tang D; Li J; Lan H; Rong T
    BMC Genomics; 2015 Aug; 16(1):601. PubMed ID: 26269146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indel detection from RNA-seq data: tool evaluation and strategies for accurate detection of actionable mutations.
    Sun Z; Bhagwate A; Prodduturi N; Yang P; Kocher JA
    Brief Bioinform; 2017 Nov; 18(6):973-983. PubMed ID: 27473065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vindel: a simple pipeline for checking indel redundancy.
    Li Z; Wu X; He B; Zhang L
    BMC Bioinformatics; 2014 Nov; 15(1):359. PubMed ID: 25407965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive de novo mutation discovery with HiFi long-read sequencing.
    Kucuk E; van der Sanden BPGH; O'Gorman L; Kwint M; Derks R; Wenger AM; Lambert C; Chakraborty S; Baybayan P; Rowell WJ; Brunner HG; Vissers LELM; Hoischen A; Gilissen C
    Genome Med; 2023 May; 15(1):34. PubMed ID: 37158973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative assessments of indel annotations in healthy and cancer genomes with next-generation sequencing data.
    Chen J; Guo JT
    BMC Med Genomics; 2020 Nov; 13(1):170. PubMed ID: 33167946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data.
    Bansal V; Libiger O
    Bioinformatics; 2011 Aug; 27(15):2047-53. PubMed ID: 21653520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SRPRISM (Single Read Paired Read Indel Substitution Minimizer): an efficient aligner for assemblies with explicit guarantees.
    Morgulis A; Agarwala R
    Gigascience; 2020 Apr; 9(4):. PubMed ID: 32315028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the impact of exact reads on reducing the error rate of read mapping.
    Salari F; Zare-Mirakabad F; Sadeghi M; Rokni-Zadeh H
    BMC Bioinformatics; 2018 Nov; 19(1):406. PubMed ID: 30400807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. KATK: Fast genotyping of rare variants directly from unmapped sequencing reads.
    Kaplinski L; Möls M; Puurand T; Pajuste FD; Remm M
    Hum Mutat; 2021 Jun; 42(6):777-786. PubMed ID: 33715282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leveraging known genomic variants to improve detection of variants, especially close-by Indels.
    Vo NS; Phan V
    Bioinformatics; 2018 Sep; 34(17):2918-2926. PubMed ID: 29590294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.
    Kisand V; Lettieri T
    BMC Genomics; 2013 Apr; 14():211. PubMed ID: 23547799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved variation calling via an iterative backbone remapping and local assembly method for bacterial genomes.
    Tae H; Settlage RE; Shallom S; Bavarva JH; Preston D; Hawkins GN; Adams LG; Garner HR
    Genomics; 2012 Nov; 100(5):271-6. PubMed ID: 22967795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing.
    Chen TW; Gan RC; Chang YF; Liao WC; Wu TH; Lee CC; Huang PJ; Lee CY; Chen YY; Chiu CH; Tang P
    BMC Genomics; 2015 Aug; 16(1):648. PubMed ID: 26315384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.