BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28267956)

  • 1. Signaling in Early Maize Kernel Development.
    Doll NM; Depège-Fargeix N; Rogowsky PM; Widiez T
    Mol Plant; 2017 Mar; 10(3):375-388. PubMed ID: 28267956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis as a tool to investigate the molecular mechanisms underlying seed development in maize.
    Consonni G; Gavazzi G; Dolfini S
    Ann Bot; 2005 Sep; 96(3):353-62. PubMed ID: 15998629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward unveiling transcriptome dynamics and regulatory modules at the maternal/filial interface of developing maize kernel.
    He J; Wang J; Zhang Z
    Plant J; 2024 Jun; 118(6):2124-2140. PubMed ID: 38551088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize endosperm development.
    Dai D; Ma Z; Song R
    J Integr Plant Biol; 2021 Apr; 63(4):613-627. PubMed ID: 33448626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing.
    Li G; Wang D; Yang R; Logan K; Chen H; Zhang S; Skaggs MI; Lloyd A; Burnett WJ; Laurie JD; Hunter BG; Dannenhoffer JM; Larkins BA; Drews GN; Wang X; Yadegari R
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7582-7. PubMed ID: 24821765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation.
    Zhan J; Thakare D; Ma C; Lloyd A; Nixon NM; Arakaki AM; Burnett WJ; Logan KO; Wang D; Wang X; Drews GN; Yadegari R
    Plant Cell; 2015 Mar; 27(3):513-31. PubMed ID: 25783031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The encyclopedia of maize kernel gene expression.
    Li Q; Wu Y
    J Integr Plant Biol; 2020 Jul; 62(7):879-881. PubMed ID: 31456310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation.
    Zheng X; Li Q; Li C; An D; Xiao Q; Wang W; Wu Y
    Plant Cell; 2019 Nov; 31(11):2613-2635. PubMed ID: 31530735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize.
    Gillmor CS; Settles AM; Lukowitz W
    Methods Mol Biol; 2020; 2122():3-14. PubMed ID: 31975291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A MYB-related transcription factor ZmMYBR29 is involved in grain filling.
    Wu JW; Wang XY; Yan RY; Zheng GM; Zhang L; Wang Y; Zhao YJ; Wang BH; Pu ML; Zhang XS; Zhao XY
    BMC Plant Biol; 2024 May; 24(1):458. PubMed ID: 38797860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may).
    Wang P; Xia H; Zhang Y; Zhao S; Zhao C; Hou L; Li C; Li A; Ma C; Wang X
    BMC Genomics; 2015 Jan; 16(1):21. PubMed ID: 25612809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport.
    Sosso D; Luo D; Li QB; Sasse J; Yang J; Gendrot G; Suzuki M; Koch KE; McCarty DR; Chourey PS; Rogowsky PM; Ross-Ibarra J; Yang B; Frommer WB
    Nat Genet; 2015 Dec; 47(12):1489-93. PubMed ID: 26523777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize.
    Chourey PS; Li QB; Kumar D
    Mol Plant; 2010 Nov; 3(6):1026-36. PubMed ID: 20924026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development.
    Grimault A; Gendrot G; Chamot S; Widiez T; Rabillé H; Gérentes MF; Creff A; Thévenin J; Dubreucq B; Ingram GC; Rogowsky PM; Depège-Fargeix N
    Plant J; 2015 Nov; 84(3):574-86. PubMed ID: 26361885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize.
    Bernardi J; Battaglia R; Bagnaresi P; Lucini L; Marocco A
    Plant Sci; 2019 Apr; 281():133-145. PubMed ID: 30824046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrose-associated SnRK1a1-mediated phosphorylation of Opaque2 modulates endosperm filling in maize.
    Yang T; Huang Y; Liao L; Wang S; Zhang H; Pan J; Huang Y; Li X; Chen D; Liu T; Lu X; Wu Y
    Mol Plant; 2024 May; 17(5):788-806. PubMed ID: 38615195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormonal responses during early embryogenesis in maize.
    Chen J; Lausser A; Dresselhaus T
    Biochem Soc Trans; 2014 Apr; 42(2):325-31. PubMed ID: 24646239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum.
    Doll NM; Just J; Brunaud V; Caïus J; Grimault A; Depège-Fargeix N; Esteban E; Pasha A; Provart NJ; Ingram GC; Rogowsky PM; Widiez T
    Plant Cell; 2020 Apr; 32(4):833-852. PubMed ID: 32086366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signalling events regulating seed coat development.
    Figueiredo DD; Köhler C
    Biochem Soc Trans; 2014 Apr; 42(2):358-63. PubMed ID: 24646244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.