These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 2826798)
1. Glial glutamate dehydrogenase: ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. Aoki C; Milner TA; Berger SB; Sheu KF; Blass JP; Pickel VM J Neurosci Res; 1987; 18(2):305-18. PubMed ID: 2826798 [TBL] [Abstract][Full Text] [Related]
2. Identification of mitochondrial and non-mitochondrial glutaminase within select neurons and glia of rat forebrain by electron microscopic immunocytochemistry. Aoki C; Kaneko T; Starr A; Pickel VM J Neurosci Res; 1991 Apr; 28(4):531-48. PubMed ID: 1714509 [TBL] [Abstract][Full Text] [Related]
3. Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: implications for neuron-glia interactions in glutamate transmission. Aoki C; Milner TA; Sheu KF; Blass JP; Pickel VM J Neurosci; 1987 Jul; 7(7):2214-31. PubMed ID: 3302125 [TBL] [Abstract][Full Text] [Related]
4. [Differences in the enzymatic activity of mitochondria from enriched neuronal and glial fractions]. Venkov L; Rusanov E Ukr Biokhim Zh; 1976; 48(2):215-22. PubMed ID: 181884 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome oxidase activity in the rat caudate nucleus: light and electron microscopic observations. Difiglia M; Graveland GA; Schiff L J Comp Neurol; 1987 Jan; 255(1):137-45. PubMed ID: 3029185 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. Mastorodemos V; Zaganas I; Spanaki C; Bessa M; Plaitakis A J Neurosci Res; 2005 Jan 1-15; 79(1-2):65-73. PubMed ID: 15578726 [TBL] [Abstract][Full Text] [Related]
7. Developmental expression of glutamate transporters and glutamate dehydrogenase in astrocytes of the postnatal rat hippocampus. Kugler P; Schleyer V Hippocampus; 2004; 14(8):975-85. PubMed ID: 15390174 [TBL] [Abstract][Full Text] [Related]
8. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. Borowsky IW; Collins RC J Comp Neurol; 1989 Oct; 288(3):401-13. PubMed ID: 2551935 [TBL] [Abstract][Full Text] [Related]
9. Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Mastorodemos V; Kotzamani D; Zaganas I; Arianoglou G; Latsoudis H; Plaitakis A Biochem Cell Biol; 2009 Jun; 87(3):505-16. PubMed ID: 19448744 [TBL] [Abstract][Full Text] [Related]
10. [Ultrastructural localization of cytochrome oxidase in human embryonic brain cells]. Rubleva ZIa Zh Nevropatol Psikhiatr Im S S Korsakova; 1983; 83(3):69-74. PubMed ID: 6858501 [TBL] [Abstract][Full Text] [Related]
11. Brain cytochrome oxidase activity of synaptic and nonsynaptic mitochondria during aging. Gorini A; Arnaboldi R; Ghigini B; Villa RF Basic Appl Histochem; 1989; 33(2):139-45. PubMed ID: 2547357 [TBL] [Abstract][Full Text] [Related]
12. The subcellular localization of glutamate dehydrogenase (GDH): is GDH a marker for mitochondria in brain? Lai JC; Sheu KF; Kim YT; Clarke DD; Blass JP Neurochem Res; 1986 May; 11(5):733-44. PubMed ID: 3523273 [TBL] [Abstract][Full Text] [Related]
13. Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Rothe F; Brosz M; Storm-Mathisen J Neuroscience; 1994 Oct; 62(4):1133-46. PubMed ID: 7531302 [TBL] [Abstract][Full Text] [Related]
14. Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. Carroll EW; Wong-Riley MT J Comp Neurol; 1984 Jan; 222(1):1-17. PubMed ID: 6321561 [TBL] [Abstract][Full Text] [Related]
15. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Karaca M; Frigerio F; Maechler P Neurochem Int; 2011 Sep; 59(4):510-7. PubMed ID: 21600947 [TBL] [Abstract][Full Text] [Related]
16. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury. Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873 [TBL] [Abstract][Full Text] [Related]
17. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Kaur P; Radotra B; Minz RW; Gill KD Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875 [TBL] [Abstract][Full Text] [Related]
18. The enzymatic ontogeny of neurons and glial cells isolated from postnatal rat cerebral gray matter. Arbogast BW; Arsenis C Neurobiology; 1974; 4(1):21-37. PubMed ID: 4362525 [No Abstract] [Full Text] [Related]
19. An ultrathin frozen section is suitable for demonstrating cytochrome c oxidase activity at electron microscopic level. Fukushima O; Komiya M; Yamashita H J Electron Microsc (Tokyo); 1993 Oct; 42(5):351-5. PubMed ID: 8106857 [TBL] [Abstract][Full Text] [Related]
20. Rat cortex synaptic and nonsynaptic mitochondria: enzymatic characterization and pharmacological effects of naftidrofuryl. Dagani F; Gorini A; Polgatti M; Villa RF; Benzi G J Neurosci Res; 1983; 10(2):135-40. PubMed ID: 6313951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]