These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28267986)

  • 1. Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.
    Zakerimanesh A; Hashemzadeh F; Ghiasi AR
    ISA Trans; 2017 May; 68():33-47. PubMed ID: 28267986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation.
    Ghorbanian A; Rezaei SM; Khoogar AR; Zareinejad M; Baghestan K
    ISA Trans; 2013 Mar; 52(2):268-77. PubMed ID: 23146205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive neural network based position tracking control for Dual-master/Single-slave teleoperation system under communication constant time delays.
    Ji Y; Liu D; Guo Y
    ISA Trans; 2019 Oct; 93():80-92. PubMed ID: 30910311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilateral Teleoperation With New Cooperative Structure Based on Reconfigurable Robots and Type-2 Fuzzy Logic.
    Sun D; Liao Q; Gu X; Li C; Ren H
    IEEE Trans Cybern; 2019 Aug; 49(8):2845-2859. PubMed ID: 30072352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilateral Teleoperation of Single-Master Multislave Systems With Semi-Markovian Jump Stochastic Interval Time-Varying Delayed Communication Channels.
    Baranitha R; Mohajerpoor R; Rakkiyappan R
    IEEE Trans Cybern; 2021 Jan; 51(1):247-257. PubMed ID: 30703052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Control of Semi-Autonomous Teleoperation System With Asymmetric Time-Varying Delays and Input Uncertainties.
    Zhai DH; Xia Y
    IEEE Trans Cybern; 2017 Nov; 47(11):3621-3633. PubMed ID: 27295699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensor-less force-reflecting macro-micro telemanipulation systems by piezoelectric actuators.
    Amini H; Farzaneh B; Azimifar F; Sarhan AAD
    ISA Trans; 2016 Sep; 64():293-302. PubMed ID: 27329852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Adaptive Finite-Time Control of Teleoperation System With Time-Varying Delays and Input Saturation.
    Zhang H; Song A; Li H; Shen S
    IEEE Trans Cybern; 2021 Jul; 51(7):3724-3737. PubMed ID: 31329141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral shared autonomous systems with passive and nonpassive input forces under time varying delay.
    Islam S; Liu PX; El Saddik A; Dias J; Seneviratne L
    ISA Trans; 2015 Jan; 54():218-28. PubMed ID: 25225153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilateral control of master-slave manipulators with constant time delay.
    Forouzantabar A; Talebi HA; Sedigh AK
    ISA Trans; 2012 Jan; 51(1):74-80. PubMed ID: 21862007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral motion prediction and control for teleoperation under long time-varying delays.
    Shen S; Song A; Li T
    ISA Trans; 2021 Sep; 115():61-70. PubMed ID: 33461740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Switching-Based Control Framework for Improved Task Performance in Teleoperation System With Asymmetric Time-Varying Delays.
    Zhai DH; Xia Y
    IEEE Trans Cybern; 2018 Feb; 48(2):625-638. PubMed ID: 28113354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Network-Based Control of Networked Trilateral Teleoperation With Geometrically Unknown Constraints.
    Li Z; Xia Y; Wang D; Zhai DH; Su CY; Zhao X
    IEEE Trans Cybern; 2016 May; 46(5):1051-64. PubMed ID: 25956001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive control of time delay teleoperation system with uncertain dynamics.
    Lu S; Ban Y; Zhang X; Yang B; Liu S; Yin L; Zheng W
    Front Neurorobot; 2022; 16():928863. PubMed ID: 35937561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exponential stability of bilateral sampled-data teleoperation systems using multirate approach.
    Ghavifekr AA; Ghiasi AR; Badamchizadeh MA; Hashemzadeh F
    ISA Trans; 2020 Oct; 105():190-197. PubMed ID: 32493577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensors Allocation and Observer Design for Discrete Bilateral Teleoperation Systems with Multi-Rate Sampling.
    Ghavifekr AA; De Fazio R; Velazquez R; Visconti P
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of feedforward and feedback position control for passive bilateral teleoperation with delays.
    Kostyukova O; Vista FP; Chong KT
    ISA Trans; 2019 Feb; 85():200-213. PubMed ID: 30385035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Synchronization Tracking Adaptive Control for Bilateral Teleoperation System with Time-Varying Delays.
    Chen K; Zhang H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.