These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28268287)

  • 1. Smartphone-based noise adaptive speech enhancement for hearing aid applications.
    Panahi I; Kehtarnavaz N; Thibodeau L
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():85-88. PubMed ID: 28268287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two microphones spectral-coherence based speech enhancement for hearing aids using smartphone as an assistive device.
    Reddy CK; Yiya Hao ; Panahi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3670-3673. PubMed ID: 28269090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of transient noise reduction algorithms on speech intelligibility and ratings of hearing aid users.
    DiGiovanni JJ; Davlin EA; Nagaraj NK
    Am J Audiol; 2011 Dec; 20(2):140-50. PubMed ID: 21940982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking of Noise Tolerance to Predict Hearing Aid Satisfaction in Loud Noisy Environments.
    Seper E; Kuk F; Korhonen P; Slugocki C
    J Am Acad Audiol; 2019 Apr; 30(4):302-314. PubMed ID: 30461409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.
    Wolfe J; Duke M; Schafer E; Jones C; Rakita L
    J Am Acad Audiol; 2017 May; 28(5):415-435. PubMed ID: 28534732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a transient noise reduction strategy for hearing AIDS.
    Liu H; Zhang H; Bentler RA; Han D; Zhang L
    J Am Acad Audiol; 2012 Sep; 23(8):606-15. PubMed ID: 22967735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-based single-channel speech enhancement application for hearing aids.
    Shankar N; Bhat GS; Panahi IMS; Tittle S; Thibodeau LM
    J Acoust Soc Am; 2021 Sep; 150(3):1663. PubMed ID: 34598612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated machine learning based speech classification for hearing aid applications and its real-time implementation on smartphone.
    Bhat GS; Shankar N; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():956-959. PubMed ID: 33018143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.
    Yook S; Nam KW; Kim H; Hong SH; Jang DP; Kim IY
    Artif Organs; 2015 Apr; 39(4):361-8. PubMed ID: 25284135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Adjusted Amplification Parameters Produce Large Between-Subject Variability and Preserve Speech Intelligibility.
    Nelson PB; Perry TT; Gregan M; VanTasell D
    Trends Hear; 2018; 22():2331216518798264. PubMed ID: 30191767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-based real-time speech enhancement for improving hearing aids speech perception.
    Yu Rao ; Yiya Hao ; Panahi IM; Kehtarnavaz N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5885-5888. PubMed ID: 28269593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone based real-time super Gaussian single microphone Speech Enhancement to improve intelligibility for hearing aid users using formant information.
    Bhat GS; Reddy CKA; Shankar N; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5503-5506. PubMed ID: 30441583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of combined dynamic compression and single channel noise reduction for hearing aid applications.
    Kortlang S; Chen Z; Gerkmann T; Kollmeier B; Hohmann V; Ewert SD
    Int J Audiol; 2018 Jun; 57(sup3):S43-S54. PubMed ID: 28355947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.