These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28268300)

  • 1. A simple method for micropatterning nanofibrous hydrogel film.
    Higashi K; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():145-148. PubMed ID: 28268300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toad's egg-like cultivation process for forming microcarriers from nanofibrous hydrogel.
    Higashi K; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5900-3. PubMed ID: 26737634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility.
    Dou C; Li Z; Gong J; Li Q; Qiao C; Zhang J
    Int J Biol Macromol; 2021 Feb; 170():354-365. PubMed ID: 33359810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cellulose nanocomposites: An all-nano type of material.
    Torres FG; Arroyo JJ; Troncoso OP
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1277-1293. PubMed ID: 30813008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional BC/PEDOT Composite Nanofibers with High Performance for Electrode-Cell Interface.
    Chen C; Zhang T; Zhang Q; Feng Z; Zhu C; Yu Y; Li K; Zhao M; Yang J; Liu J; Sun D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28244-53. PubMed ID: 26550840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite.
    Jin L; Zeng Z; Kuddannaya S; Wu D; Zhang Y; Wang Z
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1011-8. PubMed ID: 26670811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose-based materials and medical devices: current state and perspectives.
    Petersen N; Gatenholm P
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1277-86. PubMed ID: 21744133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films.
    Tovar-Carrillo KL; Nakasone K; Sugita S; Tagaya M; Kobayashi T
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():808-15. PubMed ID: 25063183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Squeeze-film hydrogel deposition and dry micropatterning.
    Ding Z; Salim A; Ziaie B
    Anal Chem; 2010 Apr; 82(8):3377-82. PubMed ID: 20329709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose.
    Wu HL; Bremner DH; Wang HJ; Wu JZ; Li HY; Wu JR; Niu SW; Zhu LM
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():516-524. PubMed ID: 28629048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation.
    Zhou D; Sun Y; Bao Z; Liu W; Xian M; Nian R; Xu F
    Macromol Biosci; 2019 May; 19(5):e1800395. PubMed ID: 30721574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Egg source natural proteins LBL modified cellulose nanofibrous mats and their cellular compatibility.
    Li D; Cheng Y; Shahzadi I; Jiang G; Yi Y; Shi X; Du Y; Deng H
    Carbohydr Polym; 2019 Jun; 213():329-337. PubMed ID: 30879676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film.
    Chiaoprakobkij N; Seetabhawang S; Sanchavanakit N; Phisalaphong M
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):961-982. PubMed ID: 31043124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering.
    Ao C; Niu Y; Zhang X; He X; Zhang W; Lu C
    Int J Biol Macromol; 2017 Apr; 97():568-573. PubMed ID: 28087448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application.
    Picone P; Sabatino MA; Ajovalasit A; Giacomazza D; Dispenza C; Di Carlo M
    Int J Biol Macromol; 2019 Jan; 121():784-795. PubMed ID: 30342149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbially-derived nanofibrous cellulose polymer for connective tissue regeneration.
    Younesi M; Akkus A; Akkus O
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():96-102. PubMed ID: 30889771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold.
    Isobe N; Komamiya T; Kimura S; Kim UJ; Wada M
    Int J Biol Macromol; 2018 Oct; 117():625-631. PubMed ID: 29778880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability.
    Sato A; Wang R; Ma H; Hsiao BS; Chu B
    J Electron Microsc (Tokyo); 2011; 60(3):201-9. PubMed ID: 21562026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration.
    Wen X; Zheng Y; Wu J; Wang LN; Yuan Z; Peng J; Meng H
    Int J Nanomedicine; 2015; 10():4623-37. PubMed ID: 26229466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique.
    Wang J; Wan Y; Huang Y
    IET Nanobiotechnol; 2012 Jun; 6(2):52-7. PubMed ID: 22559707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.