These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28268313)

  • 21. [The progress in research on changes of central venous pressure under simulated weightlessness and microgravity].
    Wang DS; Sun L; Xiang QL; Ren W
    Space Med Med Eng (Beijing); 1999 Dec; 12(6):459-63. PubMed ID: 12434816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Space cycle: a human-powered centrifuge that can be used for hypergravity resistance training.
    Yang Y; Kaplan A; Pierre M; Adams G; Cavanagh P; Takahashi C; Kreitenberg A; Hicks J; Keyak J; Caiozzo V
    Aviat Space Environ Med; 2007 Jan; 78(1):2-9. PubMed ID: 17225475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypergravity resistance exercise: the use of artificial gravity as potential countermeasure to microgravity.
    Yang Y; Baker M; Graf S; Larson J; Caiozzo VJ
    J Appl Physiol (1985); 2007 Nov; 103(5):1879-87. PubMed ID: 17872403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt.
    Siamwala JH; Lee PC; Macias BR; Hargens AR
    J Appl Physiol (1985); 2015 Jul; 119(2):101-9. PubMed ID: 25930022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiopulmonary Responses to Sub-Maximal Ergometer Exercise in a Hypo-Gravity Analog Using Head-Down Tilt and Head-Up Tilt.
    Diaz-Artiles A; Navarro Tichell P; Perez F
    Front Physiol; 2019; 10():720. PubMed ID: 31263424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of amyloplast movement in cress root statocytes under different gravitational loads.
    Gaina V; Svegzdiene D; Rakleviciene D; Koryzniene D; Staneviciene R; Laurinavicius R
    Adv Space Res; 2003; 31(10):2275-81. PubMed ID: 14686443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introducing
    Garschagen LS; Mancinelli RL; Moeller R
    Astrobiology; 2019 Oct; 19(10):1211-1220. PubMed ID: 31486680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute effects of simulated microgravity on heart rate variability.
    Diedrich A; Drescher J; Nalishitj V; Kirchner F
    J Gravit Physiol; 1994 May; 1(1):P35-6. PubMed ID: 11538755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans.
    Iwase S
    Acta Astronaut; 2005; 57(2-8):75-80. PubMed ID: 16010754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adrenergic vascular control.
    Mano T
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S85-9. PubMed ID: 8897410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of human head flexion on the control of peripheral blood flow in microgravity and in 1 g.
    Herault S; Tobal N; Normand H; Roumy J; Denise P; Arbeille P
    Eur J Appl Physiol; 2002 Jul; 87(3):296-303. PubMed ID: 12111293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptomic Analysis of Planarians under Simulated Microgravity or 8 g Demonstrates That Alteration of Gravity Induces Genomic and Cellular Alterations That Could Facilitate Tumoral Transformation.
    de Sousa N; Rodriguez-Esteban G; Colagè I; D'Ambrosio P; van Loon JJWA; Saló E; Adell T; Auletta G
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30743987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreased +gz tolerance following lower body positive pressure: simulated push-pull effect.
    Zhang WX; Zhan CL; Geng XC; Mu DW; Lu XIA ; Yan GD; Chu X
    Aviat Space Environ Med; 2001 Nov; 72(11):1045-7. PubMed ID: 11718510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiovascular deconditioning and venous air embolism in simulated microgravity in the rat.
    Robinson RR; Doursout MF; Chelly JE; Powell MR; Little TM; Butler BD
    Aviat Space Environ Med; 1996 Sep; 67(9):835-40. PubMed ID: 9025798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microgravity-induced cardiovascular deconditioning: mechanisms and countermeasures.
    Xi-Qing S
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Nov; 28(6):532-9. PubMed ID: 23581182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-term effects of simulated microgravity on morphology and gene expression in human breast cancer cells.
    Strube F; Infanger M; Dietz C; Romswinkel A; Kraus A
    Physiol Int; 2019 Dec; 106(4):311-322. PubMed ID: 31896265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Peripheral effector mechanism hypothesis on cardiovascular dysfunction after spaceflight].
    Zhang LF; Yu ZB; Ma J; Mao QW
    Sheng Li Ke Xue Jin Zhan; 2001 Jan; 32(1):13-7. PubMed ID: 12545770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of simulated microgravity on closed-loop cardiovascular regulation and orthostatic intolerance: analysis by means of system identification.
    Xiao X; Mukkamala R; Sheynberg N; Grenon SM; Ehrman MD; Mullen TJ; Ramsdell CD; Williams GH; Cohen RJ
    J Appl Physiol (1985); 2004 Feb; 96(2):489-97. PubMed ID: 14514703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of a gravity gradient on human cardiovascular responses.
    Hastreiter D; Young LR
    J Gravit Physiol; 1997 Jul; 4(2):P23-6. PubMed ID: 11540684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Change of pulmonary circulation in microgravity and simulated microgravity].
    Sun L; Xiang QL; Wang DS; Ren W
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):305-9. PubMed ID: 11892754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.