These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28268328)

  • 1. 3D printed microfluidic mixer for point-of-care diagnosis of anemia.
    Plevniak K; Campbell M; Mei He
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():267-270. PubMed ID: 28268328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia.
    Plevniak K; Campbell M; Myers T; Hodges A; He M
    Biomicrofluidics; 2016 Sep; 10(5):054113. PubMed ID: 27733894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry.
    Duarte LC; Pereira I; Maciel LIL; Vaz BG; Coltro WKT
    Anal Chim Acta; 2022 Jan; 1190():339252. PubMed ID: 34857139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping using 3D printing in bioanalytical research.
    Zhang C; Bills BJ; Manicke NE
    Bioanalysis; 2017 Feb; 9(4):329-331. PubMed ID: 28071134
    [No Abstract]   [Full Text] [Related]  

  • 9. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
    Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK
    PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.
    Lee S; Thio SK; Park SY; Bae S
    Harmful Algae; 2019 Sep; 88():101638. PubMed ID: 31582154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis.
    Kise DP; Reddish MJ; Dyer RB
    J Micromech Microeng; 2015 Dec; 25(12):. PubMed ID: 26855478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handheld and 'Turnkey' 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications.
    Puneeth SB; Goel S
    Anal Chim Acta; 2021 Apr; 1153():338303. PubMed ID: 33714437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
    Pearce JM; Anzalone NC; Heldt CL
    J Lab Autom; 2016 Aug; 21(4):510-6. PubMed ID: 26763294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed bioanalytical devices.
    Bishop GW; Satterwhite-Warden JE; Kadimisetty K; Rusling JF
    Nanotechnology; 2016 Jul; 27(28):284002. PubMed ID: 27250897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.