BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28268367)

  • 41. Application of an advanced maximum likelihood estimation restoration method for enhanced-resolution and contrast in second-harmonic generation microscopy.
    Sivaguru M; Kabir MM; Gartia MR; Biggs DSC; Sivaguru BS; Sivaguru VA; Fried GA; Liu GL; Sadayappan S; Toussaint KC
    J Microsc; 2017 Sep; 267(3):397-408. PubMed ID: 28594468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MLEM deconvolution of protein X-ray diffraction images based on a multiple-PSF model.
    Zhu D; Razaz M; Hemmings A
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):95-102. PubMed ID: 16805105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 4D electron microscopy: principles and applications.
    Flannigan DJ; Zewail AH
    Acc Chem Res; 2012 Oct; 45(10):1828-39. PubMed ID: 22967215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.
    Pawliczek P; Romanowska-Pawliczek A; Soltys Z
    Microsc Res Tech; 2010 Mar; 73(3):187-94. PubMed ID: 19725070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blind Deconvolution of Ultrasound Images Using l1 -Norm-Constrained Block-Based Damped Variable Step-Size Multichannel LMS Algorithm.
    Hasan MK; Rabbi MS; Lee SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1116-30. PubMed ID: 27295663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation.
    Karakatsanis NA; Tsoumpas C; Zaidi H
    Comput Med Imaging Graph; 2017 Sep; 60():11-21. PubMed ID: 27887989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Blind Deconvolution for Poissonian Blurred Image With Total Variation and L
    Dong W; Tao S; Xu G; Chen Y
    IEEE Trans Image Process; 2021; 30():1030-1043. PubMed ID: 33232236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images.
    Zhu D; Razaz M; Lee R
    Comput Med Imaging Graph; 2005 Jul; 29(5):319-31. PubMed ID: 15893912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deconvolution microscopy.
    Sibarita JB
    Adv Biochem Eng Biotechnol; 2005; 95():201-43. PubMed ID: 16080270
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Semi-blind sparse image reconstruction with application to MRFM.
    Park SU; Dobigeon N; Hero AO
    IEEE Trans Image Process; 2012 Sep; 21(9):3838-49. PubMed ID: 22614653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs.
    Oberlaender M; Broser PJ; Sakmann B; Hippler S
    J Microsc; 2009 Feb; 233(2):275-89. PubMed ID: 19220694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatially varying regularization of deconvolution in 3D microscopy.
    Seo J; Hwang S; Lee JM; Park H
    J Microsc; 2014 Aug; 255(2):94-103. PubMed ID: 24917510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient learning-based blur removal method based on sparse optimization for image restoration.
    Yang H; Su X; Chen S; Zhu W; Ju C
    PLoS One; 2020; 15(3):e0230619. PubMed ID: 32218591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On-the-fly estimation of a microscopy point spread function.
    Li J; Xue F; Qu F; Ho YP; Blu T
    Opt Express; 2018 Oct; 26(20):26120-26133. PubMed ID: 30469703
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving the repeatability of topographic height measurements in confocal scanning laser imaging using maximum-likelihood deconvolution.
    Patterson AJ; Garway-Heath DF; Crabb DP
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4415-21. PubMed ID: 17003434
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blind deconvolution of 3D fluorescence microscopy using depth-variant asymmetric PSF.
    Kim B; Naemura T
    Microsc Res Tech; 2016 Jun; 79(6):480-94. PubMed ID: 27062314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.
    Wang G; Smith SJ
    PLoS Comput Biol; 2012; 8(8):e1002671. PubMed ID: 22956902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast 4D Microscopy.
    De Mey JR; Kessler P; Dompierre J; Cordelières FP; Dieterlen A; Vonesch JL; Sibarita JB
    Methods Cell Biol; 2008; 85():83-112. PubMed ID: 18155460
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting image properties in penalized-likelihood reconstructions of flat-panel CBCT.
    Wang W; Gang GJ; Siewerdsen JH; Stayman JW
    Med Phys; 2019 Jan; 46(1):65-80. PubMed ID: 30372536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.