These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28268397)

  • 1. Design of a thumb module for the FINGER rehabilitation robot.
    Wolbrecht ET; Morse KJ; Perry JC; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():582-585. PubMed ID: 28268397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Development of a Spherical 5-Bar Thumb Exoskeleton Mechanism for Poststroke Rehabilitation.
    Ketkar VD; Wolbrecht ET; Perry JC; Farrens A
    J Med Device; 2023 Jun; 17(2):021002. PubMed ID: 37152413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation.
    Wolbrecht ET; Reinkensmeyer DJ; Perez-Gracia A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975427. PubMed ID: 22275628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
    Li J; Zheng R; Zhang Y; Yao J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.
    Taheri H; Rowe JB; Gardner D; Chan V; Gray K; Bower C; Reinkensmeyer DJ; Wolbrecht ET
    J Neuroeng Rehabil; 2014 Feb; 11():10. PubMed ID: 24495432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process.
    Park Y; Bae J
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32019125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation.
    Perry JC; Trimble S; Castilho Machado LG; Schroeder JS; Belloso A; Rodriguez-de-Pablo C; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():594-597. PubMed ID: 28268400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single degree-of-freedom exoskeleton mechanism design for thumb rehabilitation.
    Yihun Y; Miklos R; Perez-Gracia A; Reinkensmeyer DJ; Denney K; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1916-20. PubMed ID: 23366289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-assisted Guitar Hero for finger rehabilitation after stroke.
    Taheri H; Rowe JB; Gardner D; Chan V; Reinkensmeyer DJ; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3911-7. PubMed ID: 23366783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finger control in the tripod grasp.
    Gentilucci M; Caselli L; Secchi C
    Exp Brain Res; 2003 Apr; 149(3):351-60. PubMed ID: 12632237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome?
    Chen PT; Jou IM; Lin CJ; Chieh HF; Kuo LC; Su FC
    Clin Orthop Relat Res; 2015 Jul; 473(7):2371-82. PubMed ID: 25690168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton.
    Tianyao Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():578-581. PubMed ID: 28324934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finger kinematic modeling and real-time hand motion estimation.
    Cerveri P; De Momi E; Lopomo N; Baud-Bovy G; Barros RM; Ferrigno G
    Ann Biomed Eng; 2007 Nov; 35(11):1989-2002. PubMed ID: 17701355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance Control of a 2-DOF Spherical 5-Bar Exoskeleton for Physical Human-Robot Interaction During Rehabilitation and Assessment.
    Wolbrecht E; Ketkar V; Perry JC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of finger motion range with compliant anthropomorphic joint design.
    Çulha U; Iida F
    Bioinspir Biomim; 2016 Feb; 11(2):026001. PubMed ID: 26891473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.