These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 28268401)
1. Flexible sliding frame for gait enhancing mechatronic system (GEMS). Younbaek Lee ; Byungjung Choi ; Jongwon Lee ; Minhyung Lee ; Se-Gon Roh ; Jeonghun Kim ; Hyundo Choi ; Yong-Jae Kim Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():598-602. PubMed ID: 28268401 [TBL] [Abstract][Full Text] [Related]
2. Friction identification in mechatronic systems. Nouri BM ISA Trans; 2004 Apr; 43(2):205-16. PubMed ID: 15098581 [TBL] [Abstract][Full Text] [Related]
3. Method to Develop Legs for Underwater Robots: From Multibody Dynamics with Experimental Data to Mechatronic Implementation. Pérez Bayas MÁ; Cely J; Sintov A; García Cena CE; Saltaren R Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366159 [TBL] [Abstract][Full Text] [Related]
4. Human-robot interaction tests on a novel robot for gait assistance. Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the passive dynamics of walking on ground, tied-belt and split-belt treadmills, and via the Gait Enhancing Mobile Shoe (GEMS). Handzić I; Reed KB IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650509. PubMed ID: 24187324 [TBL] [Abstract][Full Text] [Related]
6. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance. Miyake T; Kobayashi Y; Fujie MG; Sugano S IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839 [TBL] [Abstract][Full Text] [Related]
7. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
8. Treadmill motor current based real-time estimation of anteroposterior force during gait. Nakashima Y; Ohki E; Ando T; Kobayashi Y; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():475-8. PubMed ID: 21095886 [TBL] [Abstract][Full Text] [Related]
9. A wearable hip-assist robot reduces the cardiopulmonary metabolic energy expenditure during stair ascent in elderly adults: a pilot cross-sectional study. Kim DS; Lee HJ; Lee SH; Chang WH; Jang J; Choi BO; Ryu GH; Kim YH BMC Geriatr; 2018 Sep; 18(1):230. PubMed ID: 30268096 [TBL] [Abstract][Full Text] [Related]
10. Immediate effect of Walkbot robotic gait training on neuromechanical knee stiffness in spastic hemiplegia: a case report. Kim DH; Shin YI; Joa KL; Shin YK; Lee JJ; You SJ NeuroRehabilitation; 2013; 32(4):833-8. PubMed ID: 23867409 [TBL] [Abstract][Full Text] [Related]
11. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II. Winfree KN; Stegall P; Agrawal SK IEEE Int Conf Rehabil Robot; 2011; 2011():5975499. PubMed ID: 22275695 [TBL] [Abstract][Full Text] [Related]
12. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
13. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton. Wang J; Fei Y; Chen W Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736 [TBL] [Abstract][Full Text] [Related]
14. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
15. Comparative effects of robotic-assisted gait training combined with conventional physical therapy on paretic hip joint stiffness and kinematics between subacute and chronic hemiparetic stroke. Park JH; Shin YI; You JSH; Park MS NeuroRehabilitation; 2018; 42(2):181-190. PubMed ID: 29562554 [TBL] [Abstract][Full Text] [Related]
16. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
17. Assessment of walking performance in robot-assisted gait training: a novel approach based on empirical data. Banz R; Riener R; Lünenburger L; Bolliger M Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1977-80. PubMed ID: 19163079 [TBL] [Abstract][Full Text] [Related]
18. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback. Tamburella F; Moreno JC; Herrera Valenzuela DS; Pisotta I; Iosa M; Cincotti F; Mattia D; Pons JL; Molinari M J Neuroeng Rehabil; 2019 Jul; 16(1):95. PubMed ID: 31337400 [TBL] [Abstract][Full Text] [Related]
19. Foot pronation during walking is associated to the mechanical resistance of the midfoot joint complex. Gomes RBO; Souza TR; Paes BDC; Magalhães FA; Gontijo BA; Fonseca ST; Ocarino JM; Resende RA Gait Posture; 2019 May; 70():20-23. PubMed ID: 30780086 [TBL] [Abstract][Full Text] [Related]
20. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]