These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28268456)

  • 21. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.
    Liu YH; Wu CT; Cheng WT; Hsiao YT; Chen PM; Teng JT
    Sensors (Basel); 2014 Jul; 14(8):13361-88. PubMed ID: 25061837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM.
    Janjarasjitt S
    Med Biol Eng Comput; 2017 Oct; 55(10):1743-1761. PubMed ID: 28194648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing Neural Correlates of Human Emotions across Multiple Stimulus Presentation Paradigms.
    Masood N; Farooq H
    Brain Sci; 2021 May; 11(6):. PubMed ID: 34070554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease.
    Yuvaraj R; Murugappan M; Ibrahim NM; Sundaraj K; Omar MI; Mohamad K; Palaniappan R
    Int J Psychophysiol; 2014 Dec; 94(3):482-95. PubMed ID: 25109433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Olfactory electroencephalogram signal recognition based on wavelet energy moment].
    Zhai W; Zhang X; Hou H; Meng Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):399-404. PubMed ID: 32597080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification.
    Al Ghayab HR; Li Y; Siuly S; Abdulla S
    J Neurosci Methods; 2019 Jan; 312():43-52. PubMed ID: 30468823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
    Iacoviello D; Petracca A; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2015 Dec; 122(3):293-303. PubMed ID: 26358282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of emotional states in EEG signals using multi-frequency power spectrum and functional connectivity patterns.
    Kumar H; Ganapathy N; Puthankattil SD; Swaminathan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():280-283. PubMed ID: 36085917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complexity and Entropy Analysis to Improve Gender Identification from Emotional-Based EEGs.
    Al-Qazzaz NK; Sabir MK; Bin Mohd Ali SH; Ahmad SA; Grammer K
    J Healthc Eng; 2021; 2021():8537000. PubMed ID: 34603651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of Differential Entropy for Automated Emotion Recognition in a Virtual Reality Environment with EEG Signals.
    Uyanık H; Ozcelik STA; Duranay ZB; Sengur A; Acharya UR
    Diagnostics (Basel); 2022 Oct; 12(10):. PubMed ID: 36292197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence EEG pattern classification in sevoflurane anesthesia.
    Liang Z; Huang C; Li Y; Hight DF; Voss LJ; Sleigh JW; Li X; Bai Y
    Physiol Meas; 2018 Apr; 39(4):045006. PubMed ID: 29513276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emotion recognition from EEG using higher order crossings.
    Petrantonakis PC; Hadjileontiadis LJ
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):186-97. PubMed ID: 19858033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frontal EEG Asymmetry and Middle Line Power Difference in Discrete Emotions.
    Zhao G; Zhang Y; Ge Y
    Front Behav Neurosci; 2018; 12():225. PubMed ID: 30443208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Happy or sad? Recognizing emotions with wavelet coefficient energy mean of EEG signals.
    Chen R; Sun Z; Diao X; Wang H; Wang J; Li T; Wang Y
    Technol Health Care; 2022; 30(4):937-949. PubMed ID: 35342066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-weight single trial EEG signal processing algorithms: computational profiling for low power design.
    Ahmadi A; Jafari R; Hart J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4426-30. PubMed ID: 22255321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive and Negative Emotion Classification Based on Multi-channel.
    Long F; Zhao S; Wei X; Ng SC; Ni X; Chi A; Fang P; Zeng W; Wei B
    Front Behav Neurosci; 2021; 15():720451. PubMed ID: 34512288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient K-NN approach for automatic drowsiness detection using single-channel EEG recording.
    Jalilifard A; Brigante Pizzolato E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():820-824. PubMed ID: 28268451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.