These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 28268521)
1. Creation of a whole brain short association bundle atlas using a hybrid approach. Guevara M; Roman C; Houenou J; Duclap D; Poupon C; Mangin JF; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1115-1119. PubMed ID: 28268521 [TBL] [Abstract][Full Text] [Related]
2. Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections. Guevara M; Seguel D; Roman C; Duclap D; Lebois A; Le Bihan ; Mangin JF; Poupon C; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():426-9. PubMed ID: 26736290 [TBL] [Abstract][Full Text] [Related]
3. Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Guevara M; Román C; Houenou J; Duclap D; Poupon C; Mangin JF; Guevara P Neuroimage; 2017 Feb; 147():703-725. PubMed ID: 28034765 [TBL] [Abstract][Full Text] [Related]
4. Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. Román C; Hernández C; Figueroa M; Houenou J; Poupon C; Mangin JF; Guevara P Neuroimage; 2022 Nov; 262():119550. PubMed ID: 35944796 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Automatic Segmentation for Superficial White Matter Fiber Bundles for Probabilistic Tractography Datasets. Mendoza C; Roman C; Vazquez A; Poupon C; Mangin JF; Hernandez C; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3654-3658. PubMed ID: 34892029 [TBL] [Abstract][Full Text] [Related]
6. From Coarse to Fine-Grained Parcellation of the Cortical Surface Using a Fiber-Bundle Atlas. López-López N; Vázquez A; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P Front Neuroinform; 2020; 14():32. PubMed ID: 33071768 [TBL] [Abstract][Full Text] [Related]
7. Short association bundle atlas based on inter-subject clustering from HARDI data. Roman C; Guevara M; Duclap D; Lebois A; Poupon C; Mangin JF; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5545-5549. PubMed ID: 28269513 [TBL] [Abstract][Full Text] [Related]
8. Study of the variability of short association bundles on a HARDI database. Pardo E; Guevara P; Duclap D; Houenou J; Lebois A; Schmitt B; Le Bihan D; Mangin JF; Poupon C Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():77-80. PubMed ID: 24109628 [TBL] [Abstract][Full Text] [Related]
9. Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data. Román C; Guevara M; Valenzuela R; Figueroa M; Houenou J; Duclap D; Poupon C; Mangin JF; Guevara P Front Neuroinform; 2017; 11():73. PubMed ID: 29311886 [TBL] [Abstract][Full Text] [Related]
10. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Guevara P; Duclap D; Poupon C; Marrakchi-Kacem L; Fillard P; Le Bihan D; Leboyer M; Houenou J; Mangin JF Neuroimage; 2012 Jul; 61(4):1083-99. PubMed ID: 22414992 [TBL] [Abstract][Full Text] [Related]
11. An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Zhang F; Wu Y; Norton I; Rigolo L; Rathi Y; Makris N; O'Donnell LJ Neuroimage; 2018 Oct; 179():429-447. PubMed ID: 29920375 [TBL] [Abstract][Full Text] [Related]
12. Superficial white matter: A review on the dMRI analysis methods and applications. Guevara M; Guevara P; Román C; Mangin JF Neuroimage; 2020 May; 212():116673. PubMed ID: 32114152 [TBL] [Abstract][Full Text] [Related]
13. Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information. Vázquez A; López-López N; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P Biomed Eng Online; 2020 Jun; 19(1):42. PubMed ID: 32493483 [TBL] [Abstract][Full Text] [Related]
14. Short fiber bundle filtering and test-retest reproducibility of the Superficial White Matter. Mendoza C; Román C; Mangin JF; Hernández C; Guevara P Front Neurosci; 2024; 18():1394681. PubMed ID: 38737100 [TBL] [Abstract][Full Text] [Related]
15. Towards a functional atlas of human white matter. Sarubbo S; De Benedictis A; Merler S; Mandonnet E; Balbi S; Granieri E; Duffau H Hum Brain Mapp; 2015 Aug; 36(8):3117-36. PubMed ID: 25959791 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. Akazawa K; Chang L; Yamakawa R; Hayama S; Buchthal S; Alicata D; Andres T; Castillo D; Oishi K; Skranes J; Ernst T; Oishi K Neuroimage; 2016 Mar; 128():167-179. PubMed ID: 26712341 [TBL] [Abstract][Full Text] [Related]
17. A diffusion spectrum imaging-based tractographic study into the anatomical subdivision and cortical connectivity of the ventral external capsule: uncinate and inferior fronto-occipital fascicles. Panesar SS; Yeh FC; Deibert CP; Fernandes-Cabral D; Rowthu V; Celtikci P; Celtikci E; Hula WD; Pathak S; Fernández-Miranda JC Neuroradiology; 2017 Oct; 59(10):971-987. PubMed ID: 28721443 [TBL] [Abstract][Full Text] [Related]
18. The effect of the number of fibers in tractography reconstruction of white matter bundles. Roman C; Cardenas N; Poupon C; Mangin JF; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2825-2829. PubMed ID: 31946481 [TBL] [Abstract][Full Text] [Related]
19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data. James GA; Hazaroglu O; Bush KA Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655 [TBL] [Abstract][Full Text] [Related]
20. Multi-label segmentation of white matter structures: application to neonatal brains. Ratnarajah N; Qiu A Neuroimage; 2014 Nov; 102 Pt 2():913-22. PubMed ID: 25111473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]