These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28268618)

  • 1. Decoding speech using the timing of neural signal modulation.
    Jiang W; Pailla T; Dichter B; Chang EF; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1532-1535. PubMed ID: 28268618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution neural recordings improve the accuracy of speech decoding.
    Duraivel S; Rahimpour S; Chiang CH; Trumpis M; Wang C; Barth K; Harward SC; Lad SP; Friedman AH; Southwell DG; Sinha SR; Viventi J; Cogan GB
    Nat Commun; 2023 Nov; 14(1):6938. PubMed ID: 37932250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-to-speech decoding will require linguistic and pragmatic data.
    Li L; Negoita S
    J Neural Eng; 2018 Dec; 15(6):063001. PubMed ID: 30256217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of prior pronunciations on sensorimotor cortex activity patterns during vowel production.
    Salari E; Freudenburg ZV; Vansteensel MJ; Ramsey NF
    J Neural Eng; 2018 Dec; 15(6):066025. PubMed ID: 30238924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain2Char: a deep architecture for decoding text from brain recordings.
    Sun P; Anumanchipalli GK; Chang EF
    J Neural Eng; 2020 Dec; 17(6):. PubMed ID: 33142282
    [No Abstract]   [Full Text] [Related]  

  • 6. The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography.
    Rabbani Q; Milsap G; Crone NE
    Neurotherapeutics; 2019 Jan; 16(1):144-165. PubMed ID: 30617653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids.
    Ramsey NF; Salari E; Aarnoutse EJ; Vansteensel MJ; Bleichner MG; Freudenburg ZV
    Neuroimage; 2018 Oct; 180(Pt A):301-311. PubMed ID: 28993231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-Computer Interface: Applications to Speech Decoding and Synthesis to Augment Communication.
    Luo S; Rabbani Q; Crone NE
    Neurotherapeutics; 2022 Jan; 19(1):263-273. PubMed ID: 35099768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithm for decoding multiple subthalamic spike trains for speech brain-machine interfaces.
    Tankus A; Solomon L; Aharony Y; Faust-Socher A; Strauss I
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34695815
    [No Abstract]   [Full Text] [Related]  

  • 10. Neural decoding of electrocorticographic signals using dynamic mode decomposition.
    Shiraishi Y; Kawahara Y; Yamashita O; Fukuma R; Yamamoto S; Saitoh Y; Kishima H; Yanagisawa T
    J Neural Eng; 2020 Jun; 17(3):036009. PubMed ID: 32289756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical encoding of phonemic context during word production.
    Mugler EM; Goldrick M; Slutzky MW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6790-3. PubMed ID: 25571555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated Vowel Production Affects Features of Neural Activity in Sensorimotor Cortex.
    Salari E; Freudenburg ZV; Vansteensel MJ; Ramsey NF
    Brain Topogr; 2019 Jan; 32(1):97-110. PubMed ID: 30238309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning decoding of single neurons in the thalamus for speech brain-machine interfaces.
    Tankus A; Rosenberg N; Ben-Hamo O; Stern E; Strauss I
    J Neural Eng; 2024 May; 21(3):. PubMed ID: 38648783
    [No Abstract]   [Full Text] [Related]  

  • 14. Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models.
    Berezutskaya J; Freudenburg ZV; Vansteensel MJ; Aarnoutse EJ; Ramsey NF; van Gerven MAJ
    J Neural Eng; 2023 Sep; 20(5):. PubMed ID: 37467739
    [No Abstract]   [Full Text] [Related]  

  • 15. Imagined speech can be decoded from low- and cross-frequency intracranial EEG features.
    Proix T; Delgado Saa J; Christen A; Martin S; Pasley BN; Knight RT; Tian X; Poeppel D; Doyle WK; Devinsky O; Arnal LH; Mégevand P; Giraud AL
    Nat Commun; 2022 Jan; 13(1):48. PubMed ID: 35013268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECoG data analyses to inform closed-loop BCI experiments for speech-based prosthetic applications.
    Pailla T; Jiang W; Dichter B; Chang EF; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5713-5716. PubMed ID: 28269552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding of Chinese phoneme clusters using ECoG.
    Song C; Xu R; Hong B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1278-81. PubMed ID: 25570199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-to-text: decoding spoken phrases from phone representations in the brain.
    Herff C; Heger D; de Pesters A; Telaar D; Brunner P; Schalk G; Schultz T
    Front Neurosci; 2015; 9():217. PubMed ID: 26124702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex.
    Ibayashi K; Kunii N; Matsuo T; Ishishita Y; Shimada S; Kawai K; Saito N
    Front Neurosci; 2018; 12():221. PubMed ID: 29674950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural decoding of single vowels during covert articulation using electrocorticography.
    Ikeda S; Shibata T; Nakano N; Okada R; Tsuyuguchi N; Ikeda K; Kato A
    Front Hum Neurosci; 2014; 8():125. PubMed ID: 24639642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.