BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28268642)

  • 1. Hidden-Markov Factor analysis as a spatiotemporal model for electrocorticography.
    Omigbodun A; Doyle WK; Devinsky O; Friedman D; Thesen T; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1632-1635. PubMed ID: 28268642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity.
    Yu BM; Cunningham JP; Santhanam G; Ryu SI; Shenoy KV; Sahani M
    J Neurophysiol; 2009 Jul; 102(1):614-35. PubMed ID: 19357332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.
    Takaura K; Tsuchiya N; Fujii N
    Neuroimage; 2016 Jan; 124(Pt A):557-572. PubMed ID: 26363347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic network modeling and dimensionality reduction for human ECoG activity.
    Yang Y; Sani OG; Chang EF; Shanechi MM
    J Neural Eng; 2019 Aug; 16(5):056014. PubMed ID: 31096206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of reaching movement trajectories using electrocorticographic signals in humans.
    Talakoub O; Marquez-Chin C; Popovic MR; Navarro J; Fonoff ET; Hamani C; Wong W
    PLoS One; 2017; 12(9):e0182542. PubMed ID: 28931054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting Low-Dimensional Latent Structure from Time Series in the Presence of Delays.
    Lakshmanan KC; Sadtler PT; Tyler-Kabara EC; Batista AP; Yu BM
    Neural Comput; 2015 Sep; 27(9):1825-56. PubMed ID: 26079746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal dynamics of human high gamma discriminate naturalistic behavioral states.
    Alasfour A; Gabriel P; Jiang X; Shamie I; Melloni L; Thesen T; Dugan P; Friedman D; Doyle W; Devinsky O; Gonda D; Sattar S; Wang S; Halgren E; Gilja V
    PLoS Comput Biol; 2022 Aug; 18(8):e1010401. PubMed ID: 35939509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping working memory retrieval in space and in time: A combined electroencephalography and electrocorticography approach.
    Zhang Q; van Vugt M; Borst JP; Anderson JR
    Neuroimage; 2018 Jul; 174():472-484. PubMed ID: 29571716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase relationship between micro-electrocorticography and cortical neurons.
    Richner TJ; Brodnick SK; Thongpang S; Sandberg AA; Krugner-Higby LA; Williams JC
    J Neural Eng; 2019 Oct; 16(6):066028. PubMed ID: 31318702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When to include ECoG electrode properties in volume conduction models.
    Vermaas M; Piastra MC; Oostendorp TF; Ramsey NF; Tiesinga PHE
    J Neural Eng; 2020 Oct; 17(5):056031. PubMed ID: 33055363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography.
    Muller L; Hamilton LS; Edwards E; Bouchard KE; Chang EF
    J Neural Eng; 2016 Oct; 13(5):056013. PubMed ID: 27578414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus.
    Muller L; Felix S; Shah KG; Kye Lee ; Pannu S; Chang EF
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1528-1531. PubMed ID: 28268617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A minimally invasive flexible electrode array for simultaneous recording of ECoG signals from multiple brain regions.
    Jeong UJ; Lee J; Chou N; Kim K; Shin H; Chae U; Yu HY; Cho IJ
    Lab Chip; 2021 Jun; 21(12):2383-2397. PubMed ID: 33955442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of subdural and subgaleal recordings of cortical high-gamma activity in humans.
    Olson JD; Wander JD; Johnson L; Sarma D; Weaver K; Novotny EJ; Ojemann JG; Darvas F
    Clin Neurophysiol; 2016 Jan; 127(1):277-284. PubMed ID: 25907415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localizing ECoG electrodes on the cortical anatomy without post-implantation imaging.
    Gupta D; Hill NJ; Adamo MA; Ritaccio A; Schalk G
    Neuroimage Clin; 2014; 6():64-76. PubMed ID: 25379417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal compression for efficient storage and transmission of high-resolution electrocorticography data.
    Kim T; Artan NS; Viventi J; Chao HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1012-5. PubMed ID: 23366066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate.
    Degenhart AD; Eles J; Dum R; Mischel JL; Smalianchuk I; Endler B; Ashmore RC; Tyler-Kabara EC; Hatsopoulos NG; Wang W; Batista AP; Cui XT
    J Neural Eng; 2016 Aug; 13(4):046019. PubMed ID: 27351722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gaussian Process Model of Human Electrocorticographic Data.
    Owen LLW; Muntianu TA; Heusser AC; Daly PM; Scangos KW; Manning JR
    Cereb Cortex; 2020 Sep; 30(10):5333-5345. PubMed ID: 32495832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.