These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28268651)

  • 1. A new approach to mitigate the effect of force variation on pattern recognition for myoelectric control.
    Xiangxin Li ; Rui Xu ; Samuel OW; Lan Tian ; Haiqing Zou ; Xiufeng Zhang ; Shixiong Chen ; Peng Fang ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1684-1687. PubMed ID: 28268651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the robustness against force variation in EMG motion classification by common spatial patterns.
    Xiangxin Li ; Peng Fang ; Lan Tian ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():406-409. PubMed ID: 29059896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses.
    Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G
    Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of non-training movements on the performance of motion classification in electromyography pattern recognition.
    Li X; Chen S; Zhang H; Zhang X; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2569-72. PubMed ID: 25570515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptation strategy of using LDA classifier for EMG pattern recognition.
    Zhang H; Zhao Y; Yao F; Xu L; Shang P; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4267-70. PubMed ID: 24110675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5758-61. PubMed ID: 24111046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis.
    Chicoine CL; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1876-9. PubMed ID: 23366279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced robustness of myoelectric pattern recognition to across-day variation through invariant feature extraction.
    Liu J; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7262-5. PubMed ID: 26737968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control.
    He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X
    J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing.
    Ding Q; Zhao X; Han J; Bu C; Wu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1071-1080. PubMed ID: 30998472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the grasping intention from electromyography during reaching motions.
    Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A
    J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards reducing the impacts of unwanted movements on identification of motion intentions.
    Li X; Chen S; Zhang H; Samuel OW; Wang H; Fang P; Zhang X; Li G
    J Electromyogr Kinesiol; 2016 Jun; 28():90-8. PubMed ID: 27093136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic time warping for reducing the effect of force variation on myoelectric control of hand prostheses.
    Powar OS; Chemmangat K
    J Electromyogr Kinesiol; 2019 Oct; 48():152-160. PubMed ID: 31357113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.