These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28268693)

  • 1. Low-power metabolic equivalents estimation algorithm using adaptive acceleration sampling.
    Tsukahara M; Nakanishi M; Izumi S; Nakai Y; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1878-1881. PubMed ID: 28268693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm.
    Hikihara Y; Tanaka C; Oshima Y; Ohkawara K; Ishikawa-Takata K; Tanaka S
    PLoS One; 2014; 9(4):e94940. PubMed ID: 24755646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices.
    Nakanishi M; Izumi S; Nagayoshi S; Kawaguchi H; Yoshimoto M; Shiga T; Ando T; Nakae S; Usui C; Aoyama T; Tanaka S
    Biomed Eng Online; 2018 Jul; 17(1):100. PubMed ID: 30055617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the standards of one metabolic equivalent of task in accurately estimating physical activity energy expenditure based on acceleration.
    Kim D; Lee J; Park HK; Jang DP; Song S; Cho BH; Jung YS; Park RW; Joo NS; Kim IY
    J Sports Sci; 2017 Jul; 35(13):1279-1286. PubMed ID: 27556835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-power fall detection algorithm based on triaxial acceleration and barometric pressure.
    Wang C; Narayanan MR; Lord SR; Redmond SJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():570-3. PubMed ID: 25570023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical activity group classification algorithm using triaxial acceleration and heart rate.
    Nakanishi M; Izumi S; Nagayoshi S; Sato H; Kawaguchi H; Yoshimoto M; Ando T; Nakae S; Usui C; Aoyama T; Tanaka S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():510-3. PubMed ID: 26736311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of energy expenditure from wrist accelerometry in people with and without Down syndrome.
    Agiovlasitis S; Motl RW; Foley JT; Fernhall B
    Adapt Phys Activ Q; 2012 Apr; 29(2):179-90. PubMed ID: 22467836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxed ordered subset preconditioned alternating projection algorithm for PET reconstruction with automated penalty weight selection.
    Ross Schmidtlein C; Lin Y; Li S; Krol A; Beattie BJ; Humm JL; Xu Y
    Med Phys; 2017 Aug; 44(8):4083-4097. PubMed ID: 28437565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction.
    Xing L; Hang Y; Xiong Z; Liu J; Wan Z
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of walking speed and step frequency on estimation of physical activity using accelerometers.
    Park J; Ishikawa-Takata K; Tanaka S; Mekata Y; Tabata I
    J Physiol Anthropol; 2011; 30(3):119-27. PubMed ID: 21636955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-dependent Gaussian kernel-based power spectrum modification for accurate instantaneous heart rate estimation.
    Chung H; Lee H; Lee J
    PLoS One; 2019; 14(4):e0215014. PubMed ID: 30951559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evoked hemodynamic response estimation using ensemble empirical mode decomposition based adaptive algorithm applied to dual channel functional near infrared spectroscopy (fNIRS).
    Hemmati Berivanlou N; Setarehdan SK; Ahmadi Noubari H
    J Neurosci Methods; 2014 Mar; 224():13-25. PubMed ID: 24365048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the Relationships Between Seismocardiogram Signals, Physical Activity Types and Metabolic Equivalent of Task Scores.
    Tokmak F; Semiz B
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):479-487. PubMed ID: 35901006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unobtrusive heart rate estimation during physical exercise using photoplethysmographic and acceleration data.
    Mullan P; Kanzler CM; Lorch B; Schroeder L; Winkler L; Laich L; Riedel F; Richer R; Luckner C; Leutheuser H; Eskofier BM; Pasluosta C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6114-7. PubMed ID: 26737687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between objectively evaluated physical activity and sedentary behavior and screen time in primary school children.
    Tanaka C; Tanaka M; Okuda M; Inoue S; Aoyama T; Tanaka S
    BMC Res Notes; 2017 May; 10(1):175. PubMed ID: 28464957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.