These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28268749)

  • 21. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
    Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B
    Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variable gearing in a biologically inspired pneumatic actuator array.
    Azizi E; Roberts TJ
    Bioinspir Biomim; 2013 Jun; 8(2):026002. PubMed ID: 23462288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Design and Mathematical Model of a Novel Variable Stiffness Extensor-Contractor Pneumatic Artificial Muscle.
    Al-Fahaam H; Nefti-Meziani S; Theodoridis T; Davis S
    Soft Robot; 2018 Oct; 5(5):576-591. PubMed ID: 30040059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability.
    Wang X; Khara A; Chen C
    Bioinspir Biomim; 2020 Aug; 15(5):056017. PubMed ID: 32590362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid Manufacturing of Thin Soft Pneumatic Actuators and Robots.
    Amiri Moghadam AA; Caprio A; Alaie S; Min JK; Dunham S; Mosadegh B
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and modeling of a high-load soft robotic gripper inspired by biological winding.
    Li H; Yao J; Zhou P; Zhao W; Xu Y; Zhao Y
    Bioinspir Biomim; 2020 Feb; 15(2):026006. PubMed ID: 31822642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of anisotropic pneumatic artificial muscles and their applications to soft wearable devices for text neck symptoms.
    Hojoong Kim ; Hyuntai Park ; Jongwoo Kim ; Kyu-Jin Cho ; Yong-Lae Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4135-4138. PubMed ID: 29060807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smart Pneumatic Artificial Muscle Using a Bend Sensor like a Human Muscle with a Muscle Spindle.
    Saga N; Shimada K; Inamori D; Saito N; Satoh T; Nagase JY
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Embedding Bifurcations into Pneumatic Artificial Muscle.
    Akashi N; Kuniyoshi Y; Jo T; Nishida M; Sakurai R; Wakao Y; Nakajima K
    Adv Sci (Weinh); 2024 Jul; 11(25):e2304402. PubMed ID: 38639352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of the Ultralight Hybrid Pneumatic Artificial Muscle: Modelling and optimization.
    Joe S; Totaro M; Wang H; Beccai L
    PLoS One; 2021; 16(4):e0250325. PubMed ID: 33886654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically-Driven Soft Fluidic Actuators Combining Stretchable Pumps With Thin McKibben Muscles.
    Cacucciolo V; Nabae H; Suzumori K; Shea H
    Front Robot AI; 2019; 6():146. PubMed ID: 33501161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Tendon-Driven Soft Actuator with Self-Pumping Property.
    Ren T; Li Y; Xu M; Li Y; Xiong C; Chen Y
    Soft Robot; 2020 Apr; 7(2):130-139. PubMed ID: 31584322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How to Easily Make Self-Sensing Pneumatic Inverse Artificial Muscles.
    Potnik V; Frediani G; Carpi F
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and analysis of coiled fiber reinforced soft pneumatic actuator.
    Singh G; Xiao C; Hsiao-Wecksler ET; Krishnan G
    Bioinspir Biomim; 2018 Apr; 13(3):036010. PubMed ID: 29469810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of dynamic property of pneumatic muscle actuator for design of therapeutic robot control.
    Balasubramanian S; Huang H; He J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2734-7. PubMed ID: 17946979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves.
    Ohta P; Valle L; King J; Low K; Yi J; Atkeson CG; Park YL
    Soft Robot; 2018 Apr; 5(2):204-215. PubMed ID: 29648951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A blister-like soft nano-textured thermo-pneumatic actuator as an artificial muscle.
    An S; Kang DJ; Yarin AL
    Nanoscale; 2018 Sep; 10(35):16591-16600. PubMed ID: 30152831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.
    Schmitt S; Haeufle DF; Blickhan R; Günther M
    Bioinspir Biomim; 2012 Sep; 7(3):036022. PubMed ID: 22728876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate.
    De Pascali C; Naselli GA; Palagi S; Scharff RBN; Mazzolai B
    Sci Robot; 2022 Jul; 7(68):eabn4155. PubMed ID: 35895921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.