These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 28268861)
1. Implementation of a smartphone as a wireless gyroscope platform for quantifying reduced arm swing in hemiplegie gait with machine learning classification by multilayer perceptron neural network. LeMoyne R; Mastroianni T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2626-2630. PubMed ID: 28268861 [TBL] [Abstract][Full Text] [Related]
2. Virtual Proprioception for eccentric training. LeMoyne R; Mastroianni T Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4557-4561. PubMed ID: 29060911 [TBL] [Abstract][Full Text] [Related]
3. Wireless gyroscope platform enabled by a portable media device for quantifying wobble board therapy. LeMoyne R; Mastroianni T Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2662-2666. PubMed ID: 29060447 [TBL] [Abstract][Full Text] [Related]
4. Implementation of a smartphone as a wireless gyroscope application for the quantification of reflex response. LeMoyne R; Mastroianni T Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3654-7. PubMed ID: 25570783 [TBL] [Abstract][Full Text] [Related]
5. Implementation of a smartphone for evaluating gait characteristics of a trans-tibial prosthesis. LeMoyne R; Mastroianni T; Montoya K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3674-7. PubMed ID: 25570788 [TBL] [Abstract][Full Text] [Related]
6. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning. LeMoyne R; Tomycz N; Mastroianni T; McCandless C; Cozza M; Peduto D Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6772-5. PubMed ID: 26737848 [TBL] [Abstract][Full Text] [Related]
7. A wireless sensor insole for collecting gait data. Rösevall J; Rusu C; Talavera G; Carrabina J; Garcia J; Carenas C; Breuil F; Reixach E; Torrent M; Burkard S; Colitti W Stud Health Technol Inform; 2014; 200():176-8. PubMed ID: 24851988 [TBL] [Abstract][Full Text] [Related]
8. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks. Gholami M; Rezaei A; Cuthbert TJ; Napier C; Menon C Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816931 [TBL] [Abstract][Full Text] [Related]
9. The Pediatric SmartShoe: Wearable Sensor System for Ambulatory Monitoring of Physical Activity and Gait. Hegde N; Zhang T; Uswatte G; Taub E; Barman J; McKay S; Taylor A; Morris DM; Griffin A; Sazonov ES IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):477-486. PubMed ID: 29432115 [TBL] [Abstract][Full Text] [Related]
10. Deep Convolutional Neural Network-Based Hemiplegic Gait Detection Using an Inertial Sensor Located Freely in a Pocket. Shin H Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271066 [TBL] [Abstract][Full Text] [Related]
11. Design of the wearable device for hemiplegic gait detection using an accelerometer and a gyroscope. Sooji Park ; Jun Seok Lee ; Jaekyung Kwak ; Hangsik Shin Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1409-1412. PubMed ID: 29060141 [TBL] [Abstract][Full Text] [Related]
12. Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study. Di Rosa M; Hausdorff JM; Stara V; Rossi L; Glynn L; Casey M; Burkard S; Cherubini A Gait Posture; 2017 Jun; 55():6-11. PubMed ID: 28407507 [TBL] [Abstract][Full Text] [Related]
13. Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson's disease hand tremor. LeMoyne R; Mastroianni T Methods Mol Biol; 2015; 1256():335-58. PubMed ID: 25626550 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform. Potluri S; Chandran AB; Diedrich C; Schega L Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967 [TBL] [Abstract][Full Text] [Related]
15. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study. Chae SH; Kim Y; Lee KS; Park HS JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361 [TBL] [Abstract][Full Text] [Related]
16. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525 [TBL] [Abstract][Full Text] [Related]
17. Design of a Remote Real-Time Monitoring System for Multiple Physiological Parameters Based on Smartphone. Al-Naggar NQ; Al-Hammadi HM; Al-Fusail AM; Al-Shaebi ZA J Healthc Eng; 2019; 2019():5674673. PubMed ID: 31827740 [TBL] [Abstract][Full Text] [Related]
18. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. Zhan A; Mohan S; Tarolli C; Schneider RB; Adams JL; Sharma S; Elson MJ; Spear KL; Glidden AM; Little MA; Terzis A; Dorsey ER; Saria S JAMA Neurol; 2018 Jul; 75(7):876-880. PubMed ID: 29582075 [TBL] [Abstract][Full Text] [Related]
19. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones. Li P; Wang Y; Tian Y; Zhou TS; Li JS IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822 [TBL] [Abstract][Full Text] [Related]
20. Effects of Gyroscope on Arm Swing and Gait in Healthy Volunteers. Şipal MS; Yalçın E; Karaduman AA Appl Bionics Biomech; 2023; 2023():6630913. PubMed ID: 36968292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]